Advertisement

MaxSAT-Based MCS Enumeration

  • Antonio Morgado
  • Mark Liffiton
  • Joao Marques-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7857)

Abstract

Enumeration of Minimal Correction Sets (MCS) finds a wide range of practical applications, including the identification of Minimal Unsatisfiable Subsets (MUS) used in verifying the complex control logic of microprocessor designs (e.g. in the CEGAR loop of Reveal TM [1,2]). Current state of the art MCS enumeration exploits core-guided MaxSAT algorithms, namely the so-called MSU3 [16] MaxSAT algorithm. Observe that a MaxSAT solution corresponds to a minimum sized MCS, but a formula may contain MCSes larger than those reported by a MaxSAT solution. These are obtained by enumerating all MaxSAT solutions. This paper proposes novel approaches for MCS enumeration, in the context of SMT, that exploit MaxSAT algorithms other than the MSU3 algorithm. Among other contributions, the paper proposes new blocking techniques that can be applied to different MCS enumeration algorithms. In addition, the paper conducts a comprehensive experimental evaluation of MCS enumeration algorithms, including both the existing and the novel algorithms. Problem instances from hardware verification, the SMT-LIB, and the MaxSAT Evaluation are considered in the experiments.

Keywords

AllMaxSAT AllMaxSMT MCS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andraus, Z.S.: Automatic Formal Verification of Control Logic in Hardware Designs. PhD Dissertation, University of Michigan (2009)Google Scholar
  2. 2.
    Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: A formal verification tool for verilog designs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 343–352. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel optimization problems. In: International Joint Conference on Artificial Intelligence, pp. 393–398 (2009)Google Scholar
  4. 4.
    Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010), http://www.SMT-LIB.org
  5. 5.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 825–885. IOS Press (2009)Google Scholar
  6. 6.
    Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs: Foundations and applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS (LNAI), vol. 6355, pp. 154–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    de Kleer, J., Williams, B.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130 (1987)zbMATHCrossRefGoogle Scholar
  11. 11.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. Computing Research Repository abs/0712.0097 (2007)Google Scholar
  16. 16.
    Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: Design, Automation and Test in Europe, pp. 408–413 (2008)Google Scholar
  17. 17.
    Morgado, A., Marques-Silva, J.: Combinatorial optimization solutions for the maximum quartet consistency problem. Fundam. Inform. 102(3-4), 363–389 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In: Workshop on Variability Modelling of Software-Intensive Systems, pp. 83–91 (2012)Google Scholar
  22. 22.
    Prestwich, S.: Variable dependency in local search: Prevention is better than cure. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Formal Methods in Computer-Aided Design (November 2007)Google Scholar
  25. 25.
    Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling and Computation 3(3), 141–224 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sebastiani, R., Tomasi, S.: Optimization in SMT with \(\mathcal{LA}(\mathbb{Q})\) cost functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 484–498. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio Morgado
    • 1
  • Mark Liffiton
    • 2
  • Joao Marques-Silva
    • 1
    • 3
  1. 1.CASL/CSIUniversity College DublinDublinIreland
  2. 2.Illinois Wesleyan UniversityBloomingtonUSA
  3. 3.INESC-ID/ISTLisbonPortugal

Personalised recommendations