Melanoma Decision Support Using Lighting-Corrected Intuitive Feature Models

  • Robert AmelardEmail author
  • Jeffrey Glaister
  • Alexander Wong
  • David A. Clausi
Part of the Series in BioEngineering book series (SERBIOENG)


Skin lesion analysis using standard camera images has received limited attention from the scientific community due to its technical complexity and scarcity of data. The images are privy to lighting variations caused by uneven source lighting, and unconstrained differences in resolution, scale, and equipment. In this chapter, we propose a framework that performs illumination correction and feature extraction on photographs of skin lesions acquired using standard consumer-grade cameras. We apply a multi-stage illumination correction algorithm and define a set of high-level intuitive features (HLIF) that quantifies the level of asymmetry and border irregularity about a lesion. This lighting-corrected intuitive feature model framework can be used to classify skin lesion diagnoses with high accuracy. The framework accurately corrects the illumination variations and achieves high and precise sensitivity (95 % confidence interval (CI), 73.1–73.5 %) and specificity (95 % CI, 72.0–72.4 %) using a linear support vector machine classifier with cross-validation trials. It exhibits higher test-retest reliability than the much larger state-of-the-art low-level feature set (95 % CI, 78.1–79.7 % sensitivity, 75.3–76.3 % specificity). Combining our framework with these low-level features attains sensitivity (95 % CI, 83.3–84.8 %) and specificity (95 % CI, 79.7–80.1 %), which is more accurate and reliable than classification using the low-level feature set.


Melanoma Decision support system Pigmented skin lesion Feature extraction Illumination correction Standard camera 



This research was sponsored by Agfa Healthcare Inc., Ontario Centres of Excellence (OCE), and the Natural Sciences and Engineering Research Council (NSERC) of Canada.


  1. 1.
    Alcon, J.F., Ciuhu, C., Ten Kate, W., Heinrich, A., Uzunbajakava, N., Krekels, G., Siem, D., de Haan, G.: Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J. Sel. Top. Signal Proces. 3(1), 14–25 (2009)CrossRefGoogle Scholar
  2. 2.
    Aldridge, R.B., Glodzik, D., Ballerini, L., Fisher, R.B.: Utility of non-rule-based visual matching as a strategy to allow novices to achieve skin lesion diagnosis. Acta Derm. Venereol. 91(3), 279–283 (2011)CrossRefGoogle Scholar
  3. 3.
    Amelard, R., Wong, A., Clausi, D.A.: Extracting high-level intuitive features (HLIF) for classifying skin lesions using standard camera images. In: CRV’12: Ninth Conference on Computer and Robot Vision, Toronto, pp. 396–403 (2012a)Google Scholar
  4. 4.
    Amelard, R., Wong, A., Clausi, D.A.: Extracting morphological high-level intuitive features (HLIF) for enhancing skin lesion classification. In: EMBC’12: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, pp. 4458–4461 (2012b)Google Scholar
  5. 5.
    Argenziano, G., Soyer, H.P., Chimenti, S., Talamini, R., Corona, R., Sera, F., Binder, M., Cerroni, L., De Rosa, G., Ferrara, G.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J. Am. Acad. Dermatol. 48(5), 679–693 (2003)CrossRefGoogle Scholar
  6. 6.
    Aribisala, B.S., Claridge, E.: A border irregularity measure using a modified conditional entropy method as a malignant melanoma predictor. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 3656. Springer, Heidelberg, pp. 914–921 (2005)Google Scholar
  7. 7.
    Ballerini, L., Li, X., Fisher, R.B., Rees, J.: A query-by-example content-based image retrieval system of non-melanoma skin lesions. In: Caputo, B., Müller, H., Syeda-Mahmood, T., Duncan, J., Wang, F., Kalpathy-Cramer, J. (eds.) Medical Content-Based Retrieval for Clinical Decision Support, Lecture Notes in Computer Science, vol. 5853, pp. 31–38. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J.: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Celebi, M.E., Schaefer, G. (eds.) Color Medical Image Analysis, Lecture Notes in Computational Vision and Biomechanics, vol. 6, pp 63–86. Springer, Netherlands (2013)Google Scholar
  9. 9.
    Cavalcanti, P.G., Scharcanski, J.: Automated prescreening of pigmented skin lesions using standard cameras. Comput. Med. Imaging Graph. 35(6), 481–491 (2011)CrossRefGoogle Scholar
  10. 10.
    Cavalcanti, P.G.., Scharcanski, J., Lopes, C.B.O.: Shading attenuation in human skin color images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) Advances in Visual Computing, Lecture Notes in Computer Science, vol. 6453, pp. 190–198. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Celebi, M.E., Aslandogan, Y.A.: Content-based image retrieval incorporating models of human perception. In: ITCC’04: International Conference on Information Technology: Coding and Computing, vol. 2, pp. 241–245 Las Vegas (2004)Google Scholar
  12. 12.
    Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)CrossRefGoogle Scholar
  13. 13.
    Celebi, M.E., Iyatomi, H., Schaefer, G.: Contrast enhancement in dermoscopy images by maximizing a histogram bimodality measure. In: ICIP’09: 16th IEEE International Conference on Image Processing, Cairo, pp 2601–2604 (2009)Google Scholar
  14. 14.
    Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Trans. Intel. Syst. Technol.2(3), 27:1–27:27 (2011). cjlin/libsvm
  15. 15.
    Chen, M.H.: Importance-weighted marginal bayesian posterior density estimation. J. Am. Stat. Assoc. 89(427), 818–824 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Pattern Anal. Mach. Intel. IEEE Trans. 28(9), 1519–1524 (2006)CrossRefGoogle Scholar
  17. 17.
    Claridge, E., Cotton, S., Hall, P., Moncrieff, M.: From colour to tissue histology: physics-based interpretation of images of pigmented skin lesions. Med. Image Anal. 7(4), 489–502 (2003)CrossRefGoogle Scholar
  18. 18.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  19. 19.
    Cotton, S.D.: A non-invasive imaging system for assisting in the diagnosis of malignant melanoma. PhD thesis, University of Birmingham, UK (1998)Google Scholar
  20. 20.
    D’Alessandro, B., Dhawan, A.P.: 3-d volume reconstruction of skin lesions for melanin and blood volume estimation and lesion severity analysis. IEEE Trans. Med. Imaging 31(11), 2083–2092 (2012)CrossRefGoogle Scholar
  21. 21.
    Day, G.R., Barbour, R.H.: Automated melanoma diagnosis: where are we at? Skin Res. Technol. 6(1), 1–5 (2000)CrossRefGoogle Scholar
  22. 22.
    Dermatology Information System: (2012). Accessed 08 Nov 2012
  23. 23.
    DermQuest: (2012). Accessed 08 Nov 2012
  24. 24.
    Elad, M.: Retinex by two bilateral filters. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science, vol. 3459, pp. 217–229. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Engasser, H.C., Warshaw, E.M.: Dermatoscopy use by US dermatologists: a cross-sectional survey. J. Am. Acad. Dermatol. 63(3), 412–419 (2010)CrossRefGoogle Scholar
  26. 26.
    Fieguth, P.: Statistical image processing and multidimensional modeling, vol. 155, p. 65. Springer, New York (2010)Google Scholar
  27. 27.
    Frankle, J.A., McCann, J.J.: Method and apparatus for lightness imaging. US Patent 4,384,336 (1983)Google Scholar
  28. 28.
    Glaister, J., Wong, A., Clausi, D.A.: Illumination correction in dermatological photographs using multi-stage illumination modeling for skin lesion analysis. In: EMBC’12: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, pp 102–105 (2012)Google Scholar
  29. 29.
    Haeghen, Y.V., Naeyaert, J.M.A.D., Lemahieu, I., Philips, W.: An imaging system with calibrated color image acquisition for use in dermatology. IEEE Trans. Med. Imaging 19(7), 722–730 (2000)CrossRefGoogle Scholar
  30. 30.
    Herzog, C., Pappo, A., Bondy, M., Bleyer, A., Kirkwood, J.: Cancer Epidemiology in Older Adolescents and Young Adults 15 to 29 Years of Age, National Cancer Institute, Bethesda, MD, chap Malignant Melanoma, pp 53–64. NIH Pub. No. 06–5767 (2006)Google Scholar
  31. 31.
    Howlader, N., Noone, A.M., Krapcho, M., Neyman, N., Aminou, R., Altekruse, S.F., Kosary, C.L., Ruhl, J., Tatalovich, Z., Cho, H., Mariotto, A., Eisner, M.P., Lewish, D.R., Chen, H.S., Feuer, E.J.: Seer cancer statistics review, 1975–2009 (vintage 2009 populations). Technical report, Bethesda, MD (2012)Google Scholar
  32. 32.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification (2010). Accessed 22 Nov 2012
  33. 33.
    Iyatomi, H., Celebi, M.E., Schaefer, G., Tanaka, M.: Automated color calibration method for dermoscopy images. Comput. Med. Imaging Graph. 35(2), 89–98 (2011)CrossRefGoogle Scholar
  34. 34.
    Jemal, A., Siegel, R., Xu, J., Ward, E.: Cancer statistics, 2010. CA Cancer J. Clin. 60(5), 277–300 (2010)Google Scholar
  35. 35.
    Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: A review. Artif. Intell. Med. 56(2), 69–90 (2012)CrossRefGoogle Scholar
  36. 36.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)CrossRefGoogle Scholar
  37. 37.
    Lee, T.K., Atkins, M.S., Gallagher, R.P., MacAulay, C.E., Coldman, A., McLean, D.I.: Describing the structural shape of melanocytic lesions. In: SPIE Medical Imaging, pp. 1170–1179 (1999)Google Scholar
  38. 38.
    Madooei, A., Drew, M.S., Sadeghi, M., Atkins, M.S.: Intrinsic melanin and hemoglobin colour components for skin lesion malignancy detection. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2012, Lecture Notes in Computer Science, vol. 7510, pp. 315–322. Springer, Heidelberg (2012)Google Scholar
  39. 39.
    Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 13(5), 721–733 (2009)CrossRefGoogle Scholar
  40. 40.
    Moncrieff, M., Cotton, S., Claridge, E., Hall, P.: Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br. J. Dermatol. 146(3), 448–457 (2002)CrossRefGoogle Scholar
  41. 41.
    Nachbar, F., Stolz, W., Merkle, T., Cognetta, A.B., Vogt, T., Landthaler, M., Bilek, P., Braun-Falco, O., Plewig, G.: The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)CrossRefGoogle Scholar
  42. 42.
    National Center for Biotechnology Information: Melanoma—PubMed Health (2012). Accessed 08 Nov 2012
  43. 43.
    Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intel. 26(11), 1452–1458 (2004)CrossRefGoogle Scholar
  44. 44.
    Piatkowska, W., Martyna, J., Nowak, L., Przystalski, K.: A decision support system based on the semantic analysis of melanoma images using multi-elitist PSO and SVM. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science, vol. 6871, pp. 362–374. Springer, Heidelberg (2011)Google Scholar
  45. 45.
    van Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton (1979)Google Scholar
  46. 46.
    Schaefer, G., Rajab, M.I., Iyatomi, H.: Colour and contrast enhancement for improved skin lesion segmentation. Comput. Med. Imaging Graph. 35(2), 99–104 (2011)CrossRefGoogle Scholar
  47. 47.
    Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination normalization for robust face recognition against varying lighting conditions. In: AMFG’03: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, pp. 157–164 (2003)Google Scholar
  48. 48.
    Smith, A.R.: Color gamut transform pairs. SIGGRAPH Comput. Graph. 12(3), 12–19 (1978)CrossRefGoogle Scholar
  49. 49.
    Soille, P.: Morphological operators. Handb. Comput. Vis. Appl. 2, 627–682 (1999)Google Scholar
  50. 50.
    Stolz, W., Riemann, A., Cognetta, A., Pillet, L., Abmayr, W., Holzel, D., Bilek, P., Nachbar, F., Landthaler, M., Braun-Falco, O.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4(7), 521–527 (1994)Google Scholar
  51. 51.
    Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., Miyake, Y.: Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graph. 22(3), 770–779 (2003)CrossRefGoogle Scholar
  52. 52.
    Wallace, T.P., Wintz, P.A.: An efficient three-dimensional aircraft recognition algorithm using normalized fourier descriptors. Comput. Graph. Image Proces. 13(2), 99–126 (1980)CrossRefGoogle Scholar
  53. 53.
    Wong, A., Clausi, D.A., Fieguth, P.: Adaptive monte carlo retinex method for illumination and reflectance separation and color image enhancement. In: CRV’09: Canadian Conference on Computer and Robot Vision, Kelowna, pp. 108–115 (2009)Google Scholar
  54. 54.
    World Health Organization: WHO |Skin cancers (2012). Accessed 08 Nov 2012

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Robert Amelard
    • 1
    Email author
  • Jeffrey Glaister
    • 1
  • Alexander Wong
    • 1
  • David A. Clausi
    • 1
  1. 1.Department of Systems Design EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations