Automatic Diagnosis of Melanoma Based on the 7-Point Checklist

  • Gabriella Fabbrocini
  • Valerio De Vita
  • Sara Cacciapuoti
  • Giuseppe Di Leo
  • Consolatina Liguori
  • Alfredo Paolillo
  • Antonio Pietrosanto
  • Paolo Sommella
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

An image based system implementing a well-known diagnostic method is disclosed for the automatic detection of melanomas as support to clinicians. The software procedure is able to recognize automatically the skin lesion within the digital image, measure morphological and chromatic parameters, carry out a suitable classification for detecting the dermoscopic structures provided by the 7-Point Checklist. Advanced techniques are introduced at different stages of the image processing pipeline, including the border detection, the extraction of low-level features and scoring of high order features.

Keywords

Melanoma Pigmented lesions Dermoscopy Image analysis Semiautomatic diagnosis 

References

  1. 1.
    De Vries, W., Coebergh, J.W.: Cutaneous melanoma in Europe. Eur. J. Cancer 40, 2355–2366 (2004)Google Scholar
  2. 2.
    Parkin, D.M., Whelan, S.L. et al.: Cancer Incidence in Five Continents, vol. I–VIII, no. 7. IARC Cancer Base, Lyon (2007)Google Scholar
  3. 3.
    Curado, M.P., Edwards, B., et al.: Cancer Incidence in Five Continents IX, no. 160. IARC Scientific Publications (IARC), Lyon (2007)Google Scholar
  4. 4.
    Leiter, U., Buttner, P.G., Eigentler, T.K., Garbe, C.: Prognostic factors of thin cutaneous melanoma: an analysis of the central malignant melanoma registry of the German Dermatological Society. J. Clin. Oncol. 22(18), 3660–3667 (2004)Google Scholar
  5. 5.
    Mayer, J.: Systematic review of the diagnostic accuracy of dermatoscopy in detecting malignant melanoma. Med. J. Aust. 167, 206–210 (1997)Google Scholar
  6. 6.
    Argenziano, G., Fabbrocini, G., Carli, P. et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)Google Scholar
  7. 7.
    Haenssle, B. Korpas, Hansen-Hagg, C. et al.: Seven-point checklist for dermatoscopy: performance during 10 years of prospective surveillance of patients at increased melanoma risk. J. Am. Acad. Dermatol. 62(5), 785–793 (2010)Google Scholar
  8. 8.
    Soyer, H.P., Argenziano, G., Zalaudek, I. et al.: Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology 208(1), 27–31 (2004)Google Scholar
  9. 9.
    Zalaudek, I., Argenziano, G., Soyer, H.P.G. et al.: Three-point checklist of dermoscopy: an open internet study. Br. J. Dermatol. 154(3), 431–437 (2006)Google Scholar
  10. 10.
    Gereli, M.C., Onsun, N., Atilganoglu, U. et al.: Comparison of two dermoscopic techniques in the diagnosis of clinically atypical pigmented skin lesions and melanoma: seven-point and three-point checklists. Int. J. Dermatol. 49(1), 33–38 (2010)Google Scholar
  11. 11.
    Tromme, I., Sacré, L., Hammouch, F. et al.: Availability of digital dermoscopy in daily practice dramatically reduces the number of excised melanocytic lesions: results from an observational study. Br. J. Dermatol. 167(4), 778–786 (2012)Google Scholar
  12. 12.
    Binder, M., Schwarz, M., Winkler, A., et al.: Epiluminescence microscopy a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch. Dermatol. 131, 286–291 (1995)CrossRefGoogle Scholar
  13. 13.
    Blum, A., Luedtke, A.H., Ellwanger, U., Schwabe, R., Rassner, G., Garbe, C.: Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br. J. Dermatol. 151(5), 1029–1038 (2004)Google Scholar
  14. 14.
    Burroni, M., Corona, R., Dell’Eva, G., et al.: Melanoma computer-aided diagnosis: reliability and feasibility study. Clin. Cancer Res. 10, 1881–1886 (2004)CrossRefGoogle Scholar
  15. 15.
    Rubegni, P., Cevenini, G., Burroni, M., et al.: Automated diagnosis of pigmented skin lesions. Int. J. Cancer 101, 576–580 (2002)CrossRefGoogle Scholar
  16. 16.
    Ganster, H., Pinz, A., et al.: Automated melanoma recognition. IEEE Trans. Med. Imag. 20, 233–239 (2001)CrossRefGoogle Scholar
  17. 17.
    Schmid, P.: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans. Med. Imag. 18, 164–171 (1999)CrossRefGoogle Scholar
  18. 18.
    Grana, C., Pellacani, G., Cucchiara, R., Seidenari, S.: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions. IEEE Trans. Med. Imag. 22, 959–964 (2003)CrossRefGoogle Scholar
  19. 19.
    Blum, A., Luedtke, H., et al.: Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br. J. Dermatol. 151, 1029–1038 (2004)CrossRefGoogle Scholar
  20. 20.
    Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intell. Med. 56(2), 69–90 (2012)Google Scholar
  21. 21.
    Celebi, M. E., Stoecker, W.V., Moss, R. H.: Advances in skin cancer image analysis. Comput. Med. Imaging Graph. 35(2), 83–84 (2011)Google Scholar
  22. 22.
    Di Leo, G., Fabbrocini, G. et al.: ELM image processing for melanocytic skin lesion based on 7-point checklist: a preliminary discussion. Proceedings of the 13th IMEKO TC-4 Symposium, vol. 2, pp. 474–479. Athens, Greece (2004)Google Scholar
  23. 23.
    Betta, G., Di Leo, G. et al.: Dermoscopic image-analysis system: estimation of atypical pigment network and atypical vascular pattern. Proceedings of Intern Work on Medical Measurement and Applications (MeMeA), pp. 63–67 (2006)Google Scholar
  24. 24.
    Di Leo, G., Liguori, C. et al.: An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesion. IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems 2008, pp. 190–194, Istanbul, Turkey, 14–16 July 2008Google Scholar
  25. 25.
    Di Leo, G., Fabbrocini, G. et al.: Automatic diagnosis of melanoma: a software system based on the 7-point check-list. Proceedings of the 43rd Annual Hawaii International Conference on System Sciences, Computer Society Press, 5–8 Jan 2010Google Scholar
  26. 26.
    Schmid, P., Guillodb, J.: Towards a computer-aided diagnosis system for pigmented skin lesions. Comput. Med. Imag. Graphics 27, 65–78 (2003)CrossRefGoogle Scholar
  27. 27.
    Celebi, M.E., Kingravi, H.A. et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)Google Scholar
  28. 28.
    De Vita, V., Di Leo, G. et al.: Statistical image processing for the detection of dermoscopic criteria. Proceedings of XVIII IMEKO TC-4 Symposium, Natal, Brazil, 27–30 Sept 2011Google Scholar
  29. 29.
    Lee, T., Ng, V., Gallagher, R. et al.: DullRazor: a software approach to hair removal from images. Comput. Biol. Med. 27(6), 533–543 (1997)Google Scholar
  30. 30.
    Schmid, P.: Lesion detection in dermatoscopic images using anisotropic diffusion and morphological flooding. IEEE, pp. 449–453 (1999)Google Scholar
  31. 31.
    Abbas, Q., Garcia, I.F., Celebi, M.E., Ahmad, W.: A feature-preserving hair removal algorithm for dermoscopy images. Skin Res. Technol. 19(1), e27–e36 (2013)Google Scholar
  32. 32.
    Abbas, Q., Celebi, M.E., Garcia, I.F.: Hair removal methods: a comparative study for dermoscopy images. Biomed. Signal Process. Control 6(4), 395–404 (2011)Google Scholar
  33. 33.
    Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imag. Graph. 33(2), 148–153 (2009)CrossRefGoogle Scholar
  34. 34.
    Donadey, T., Serruys, C. et al.: Boundary detection of black skin tumors using an adaptive radial-based approach. SPIE Med. Imag. 3379, 810–816 (2000)Google Scholar
  35. 35.
    Cucchiara, R., Grana, C. et al.: Exploiting color and topological features for region segmentation with recursive fuzzy C-means. Mach. Graphics Vis. 11, 169–182 (2002)Google Scholar
  36. 36.
    Melli, R., Grana, C. et al.: Comparison of color clustering algorithms for segmentation of dermatological images. SPIE Med. Imag. 6144, 351–359 (2006)Google Scholar
  37. 37.
    Zhou, H., Schaefer, G., Sadka, A., Celebi, M.E.: Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE J. Sel. Top. Signal Process. 3(1), 26–34 (2009)Google Scholar
  38. 38.
    Erkol, B., Moss, R.H. et al.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11, 17–26 (2005)Google Scholar
  39. 39.
    Zhou, H., Schaefer, G., Celebi, M.E., Lin, F., Liu, T.: Gradient vector flow with mean shift for skin lesion segmentation. Comput. Med. Imag. Graph. 35(2), 121–127 (2011)Google Scholar
  40. 40.
    Abbas, Q., Celebi, M.E., Garcia, I.F.: A novel perceptually-oriented approach for skin tumor segmentation. Int. J. Innovative Comput. Inf. Control 8(3), 1837–1848 (2012)Google Scholar
  41. 41.
    Celebi, M.E., Aslandogan, Y.A. et al.: Unsupervised border detection in dermoscopy images. Skin Res. Technol. 13(4), 454–462 (2007)Google Scholar
  42. 42.
    Garnavi, R., Aldeen, M., Celebi, M.E., Varigos, G., Finch, S.: Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imag. Graphics 35(2), 105–115 (2011)Google Scholar
  43. 43.
    Celebi, M.E., Wen, Q., Hwang, S., Iyatomi, H., Schaefer, G.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19(1), e252–e258 (2013)Google Scholar
  44. 44.
    Celebi, M.E., Kingravi, H.A. et al.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 13(4), 347–353 (2008)Google Scholar
  45. 45.
    Iyatomi, H., Oka, H., Celebi, M.E., Hashimoto, M., Hagiwara, M., Tanaka, M., Ogawa, K.: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput. Med. Imag. Graphics 32(7), 566–579 (2008)Google Scholar
  46. 46.
    Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1452–1458 (2004)Google Scholar
  47. 47.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. SMC-9(1), 62–66 (1979)Google Scholar
  48. 48.
    Pradhan, R., Kumar, S., et al.: Contour line tracing algorithm for digital topographic maps. Int. J. Image Process. 4(2), 156–163 (2010)Google Scholar
  49. 49.
    Kurugollu, F., Sankur, B., Harmanci, A.E.: Color image segmentation using histogram multithresholding and fusion. Imag. Vis. Comput. 19, 915–928 (2001)Google Scholar
  50. 50.
    Levy, A., Lindenbaum, M.: Sequential Karhuen-Loeve basis extraction and its application to images. IEEE Trans. Image Process. 9, 1371–1374 (2000)CrossRefMATHGoogle Scholar
  51. 51.
    Koonty, W., Narenda, P.M., Fukunya, F.: A graph theoretic approach to non-parametric cluster analysis. IEEE Trans. Comput. 25, 936–944 (1976)Google Scholar
  52. 52.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey (2002)Google Scholar
  53. 53.
    Sadeghi, M., Razmara, M., Wighton, P., Lee, T.K., Atkins, M.S.: A novel method for detection of pigment network in dermoscopic images using graphs. Comput. Med. Imag. Graphics 35(2), 137–143 (2011)Google Scholar
  54. 54.
    Barata, C., Marques, J.S., Rozeira, J.: A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans. Biomed. Eng. 59(10), 2744–2754 (2012)Google Scholar
  55. 55.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)Google Scholar
  56. 56.
    Iyatomi, H., Oka, H., Celebi, M.E., Ogawa, K., Argenziano, G., Soyer, H., Koga, H., Saida, T., Ohara, K., Tanaka, M.: Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin. J. Invest. Dermatol. 128(8), 2049–2054 (2008)Google Scholar
  57. 57.
    Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins, M.S.: Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans. Inf. Technol. Biomed. 15(4), 622–629 (2011)Google Scholar
  58. 58.
    Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)Google Scholar
  59. 59.
    Debeir, O., Decaestecker, C.: Computer-assisted analysis of epiluminescence microscopy images of pigmented skin lesions. Cytometry 37, 255–266 (1999)Google Scholar
  60. 60.
    Celebi, M.E., Iyatomi, H. et al.: Automatic detection of blue-white veil and related structures in dermoscopy images. Comput. Med. Imag. Graphics 32(8), 670–677 (2008)Google Scholar
  61. 61.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA (1993)Google Scholar
  62. 62.
    Sadeghi, M., Lee, T.K., McLean, D.I., Lui, H., Atkins, M.S.: Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans. Med. Imag. 32(5), 849–861 (2013). doi: 10.1109/TMI.2013.2239307 Google Scholar
  63. 63.
    Landwehr, N., Hall, M., Frank, E.: Logistic model trees. 14th European Conference on, Machine Learning (2003)Google Scholar
  64. 64.
    Argenziano, G., Soyer, H.P., De Giorgi, V., et al.: Interactive Atlas of Dermoscopy. EDRA Medical Publishing & New Media, Milan, Italy (2002)Google Scholar
  65. 65.
    Hance, G.A. et al.: Unsupervised color image segmentation with application to skin tumor borders. IEEE Engineering in Medicine and Biology Magazine 15(1), 104–111 (1996)Google Scholar
  66. 66.
    Florkowski, Christopher, M.: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin. Biochem. Rev. 29(Supplement (i)), S83–S87 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gabriella Fabbrocini
    • 1
  • Valerio De Vita
    • 1
  • Sara Cacciapuoti
    • 1
  • Giuseppe Di Leo
    • 1
    • 2
  • Consolatina Liguori
    • 2
  • Alfredo Paolillo
    • 2
  • Antonio Pietrosanto
    • 2
  • Paolo Sommella
    • 2
  1. 1.Dermatology ResearchUniversity Federico II of NaplesNaplesItaly
  2. 2.Department of Industrial Engineering (DIIn)University of SalernoFiscianoItaly

Personalised recommendations