Pattern Analysis in Dermoscopic Images

Part of the Series in BioEngineering book series (SERBIOENG)


In this chapter an extensive review of algorithmic methods that automatically detect patterns in dermoscopic images of pigmented lesions is presented. Pattern Analysis seeks to identify specific patterns, which may be global and local. It is the method most commonly used for providing diagnostic accuracy for cutaneous melanoma. In this chapter, a description of global and local patterns identified by pattern analysis is presented as well as a brief explanation of algorithmic methods that carry out the detection and classification of these patterns. Although the 7-Point Checklist method corresponds to a different diagnostic technique than pattern analysis, it can be considered as a simplification of it as it classifies seven features related with local patterns. For this reason, the main techniques to automatically assess the 7-Point Checklist are briefly explained in this chapter.


Pattern analysis Dermoscopy Texture descriptors  Local patterns detection Global patterns detection Classification Machine learning 


  1. 1.
    Abbas, Q., Celebi, M.E., Serrano, C., Garcia, I.F., Ma, G.: Pattern classification of dermoscopy images: a perceptually uniform model. Pattern Recognit. 46, 86–97 (2013)CrossRefGoogle Scholar
  2. 2.
    Anantha, M., Moss, R.H., Stoecker, W.V.: Detection of pigment network in dermatoscopy images using texture analysis. Comput. Med. Imaging Graph. 28(5), 225–234 (2004)CrossRefGoogle Scholar
  3. 3.
    Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)CrossRefGoogle Scholar
  4. 4.
    Argenziano, G., Soyer, H., De Giorgio, V., Piccolo, D., Carli, P., Delfino, M., Ferrari, A., Hofmann-Wellenhof, R., Massi, D., Mazzocchetti, G., Scalvenzi, M., Wolf, I.H.: Interactive atlas of dermoscopy. EDRA-Medical Publishing and New Media, Milan (2000)Google Scholar
  5. 5.
    Argenziano, G., Soyer, H.P., Chimenti, S., Talamini, R., Corona, R., Sera, F., Binder, M., Kopf, A.W.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J. Am. Acad. Dermatol. 48(5), 680–693 (2003)CrossRefGoogle Scholar
  6. 6.
    Arroyo, J. L. G., Zapirain, B. G., Zorrilla, A. M.: Blue-white veil and dark-red patch of pigment pattern recognition in dermoscopic images using machine-learning techniques. In: IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2011, art. no. 6151559, 196–201 (2011)Google Scholar
  7. 7.
    Barata, C., Marques, J. S., Rozeira, J.: A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans. Biomed. Eng. 59(10), art. no. 100, 2744–2754 (2012)Google Scholar
  8. 8.
    Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Scalvenzi, M.: Automated application of the “7-point checklist" diagnosis method for skin lesions: estimation of chromatic and shape parameters. Conference Record —IEEE Instrumentation and Measurement Technology Conference 3, art. no. 1604486, 1818–1822 (2005)Google Scholar
  9. 9.
    Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Sommella, P.: Dermoscopic image-analysis system: estimation of atypical pigment network and atypical vascular pattern. IEEE International Workshop on Medical Measurement and Applications, MeMeA, art. 1644462, 63–67 (2006)Google Scholar
  10. 10.
    Braun, R.P., Rabinovitz, H.S., Oliviero, M., Kopf, A.W., Saurat, J.-H.: Dermoscopy of pigmented skin lesions. J. Am. Acad. Dermatol. 52(1), 109–121 (2005)CrossRefGoogle Scholar
  11. 11.
    Capdehourat, G., Corez, A., Bazzano, A., Alonso, R., Musé, P.: Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. Pattern Recognit.Lett. 32, 2187–2196 (2011)Google Scholar
  12. 12.
    Celebi, M. E., Kingravi, H. A., Aslandogan, Y. A., Stoecker, W. V.: Detection of blue–white veil areas in dermoscopy images using machine learning techniques. Progress in Biomedical Optics and Imaging—roceedings of SPIE 6144 III, art. no. 61445T (2006)Google Scholar
  13. 13.
    Celebi, M.E., Iyatomi, H., Stoecker, W.V., Moss, R.H., Rabinovitz, H.S., Argenziano, G., Soyer, H.P.: Automatic detection of blue–white veil and related structures in dermoscopy images. Comput. Med. Imaging Graph. 32(8), 670–677 (2008)CrossRefGoogle Scholar
  14. 14.
    Celebi, M.E., Stoecker, W.V., Moss, R.H.: Advances in skin cancer image analysis. Comput. Med. Imaging Graph. 35(2), 83–166 (2011)CrossRefGoogle Scholar
  15. 15.
    Dalal, A., Moss, R.H., Stanley, R.J., Stoecker, W.V., Gupta, K., Calcara, D.A., Xu, J., Shrestha, B., Drugge, R., Malters, J.M., Perry, L.A.: Concentric decile segmentation of white and hypopigmented areas in dermoscopy images of skin lesions allows discrimination of malignant melanoma. Comput. Med. Imaging Graph. 35(2), 148–154 (2011)CrossRefGoogle Scholar
  16. 16.
    Di Leo G., Paolillo A., Sommella, P., Fabbrocini, G., Rescigno, O.: A software tool for the diagnosis of melanomas. In: 2010 IEEE Instrumentation and Measurement Technology Conference, pp. 886–891 (2010)Google Scholar
  17. 17.
    Di Leo, G., Fabbrocini, G., Paolillo, A., Rescigno, O., Sommella, P.: Toward an automatic diagnosis system for skin lesions: estimation of blue–whitish veil and regresin structures. In: 6th International Multi-Conference on Systems, Signals and Devices (2009)Google Scholar
  18. 18.
    Di Leo, G., Fabbrocini, G., Paolillo, A., Sommella, P.: Automatic Diagnosis of Melanoma: a Software System based on the 7-Point Check- List. In: Proceedings of the 43rd Annual Hawaii International Conference on System Sciences, 5–8 Jan, Computer Society Press (2010)Google Scholar
  19. 19.
    Di Leo, G., Paolillo, A., Sommella, P., Liguori, C.: An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesions. In: Proceedings of IEEE Conference Virtual Environments Human-Computer Interfaces and Measurement Systems, pp. 190–194 (2008)Google Scholar
  20. 20.
    Fabbrocini, G., Betta, G., Di Leo, G., Liguori, C., Paolillo, A., Pietrosanto, A., et al.: Epiluminescence image processing for melanocytic skin lesion diagnosis based on 7-point check-list: a preliminary discussion on three parameters. Open Dermatol. J. 2010(4), 110–115 (2010)Google Scholar
  21. 21.
    Fleming, M.G., Steger, C., Zhang, J., Gao, J., Cognetta, A.B., Pollak, L., Dyer, C.R.: Techniques for a structural analysis of dermatoscopic imagery. Comput. Med. Imaging Graph. 22(5), 375–389 (1998)CrossRefGoogle Scholar
  22. 22.
    Frangi, A., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Grana, C., Cucchiara, R., Pellacani, G., Seidenari, S.: Line detection and texture characterization of network patterns. In: Proceedings—International Conference on Pattern Recognition, vol. 2(1699200), pp. 275–278 (2006)Google Scholar
  24. 24.
    Hanmandlu, M., Seba, S., Madasu, V.K., Lovell, B. C.: Fuzzy co-clustering of medical images using Bacterial Foraging. In: 23rd International Conference Image and Vision Computing New Zealand, pp. 1–6. IEEE press, New York (2008)Google Scholar
  25. 25.
    Isasi Gola, A., Garcia Zapirain, B., Mendez Zorrilla, A.: Melanomas non-invasive diagnosis application based on the ABCD rule and pattern recognition image processing algorithms. Comput. Biol. Med. 41, 742–755 (2011)Google Scholar
  26. 26.
    Iyatomi, H., Oka, H., Celebi, M.E., Tanaka, M. Ogawa K.: Parameterization of dermoscopic findings for the internet-based melanoma screening system. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing (CIISP 2007), pp. 189–193 (2007)Google Scholar
  27. 27.
    Iyatomi, H., Oka, H., Celebi, M.E., Ogawa, K., Argenziano, G., Soyer, H.P., Koga, H., Saida, T., Ohara, K., Tanaka, M.: Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin. J. Invest. Dermatol. 128(8), 2049–2054 (2008)CrossRefGoogle Scholar
  28. 28.
    Kashyap, R.: Chellappa, R.:Estimation and choice of neighbors in spatial interaction models of images. IEEE Trans. Inf. Theory 1, 60–72 (1983)Google Scholar
  29. 29.
    Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Proces. 37(3), 362–385 (1987)CrossRefGoogle Scholar
  30. 30.
    Khan, A., Gupta, K., Stanley, R.J., Stoecker, W.V., Moss, R.H., Argenziano, G., Soyer, H.P., Cognetta, A.B.: Fuzzy logic techniques for blotch feature evaluation in dermoscopy images. Comput. Med. Imaging Graph. 33(1), 50–57 (2009)CrossRefGoogle Scholar
  31. 31.
    Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intel. Med. 56(2), 69–90 (2012)CrossRefGoogle Scholar
  32. 32.
    Madasu, V. K., Lovell, B.C.: Blotch detection in pigmented skin lesions using fuzzy co-clustering and texture segmentation. DICTA 2009—Digital Image Computing: Techniques and Applications, art. no. 5384959, 25–31 (2009)Google Scholar
  33. 33.
    Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 13(5), 721–733 (2009)CrossRefGoogle Scholar
  34. 34.
    Mirzaalian, H., Lee, T.K., Hamarneh, G.: Learning features for streak detection in dermoscopic color images using localized radial flux of principal intensity curvature. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, 6164758, pp. 97–101 (2012)Google Scholar
  35. 35.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intel. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  36. 36.
    Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J. Am. Acad. Dermatol. 17, 571–583 (1987)CrossRefGoogle Scholar
  37. 37.
    Rangayyan, R.M., Acha, B., Serrano, C.: Color image processing with biomedical applications. SPIE Press, Bellingham (2011)CrossRefGoogle Scholar
  38. 38.
    Rezze, G.G., De Sa, B.C.S., Neves, R.I.: Dermoscopy: the pattern analysis. Anais Brasileiros de Dermatologia 81(3), 261–268 (2006)CrossRefGoogle Scholar
  39. 39.
    Sadeghi, M., Lee, T., Lui, H., McLean, D., Atkins, S.: Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans. Med. Imaging (2013, in press)Google Scholar
  40. 40.
    Sadeghi, M., Lee, T.K., McLean, D., Lui, H., Atkins, M.S.: Global pattern analysis and classification of dermoscopic images using textons. Progress in Biomedical Optics and Imaging—Proceedings of SPIE 8314, art. no. 83144X (2012)Google Scholar
  41. 41.
    Sadeghi, M., Lee, T.K., McLean, D., Lui, H., Atkins, M.S.: Oriented pattern analysis for streak detection in dermoscopy images. Medical image computing and computer-assisted intervention : MICCAI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 15(Pt 1), pp. 298–306 (2012)Google Scholar
  42. 42.
    Sadeghi, M., Razmara, M., Wighton, P., Lee, T.K., Atkins, M.S.: Modeling the dermoscopic structure pigment network using a clinically inspired feature set. Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. LNCS, vol. 6326, pp. 467–474. Springer, New York (2010)Google Scholar
  43. 43.
    Sadeghi, M., Razmara, M., Lee, T.K., Atkins, M.S.: A novel method for detection of pigment network in dermoscopic images using graphs. Comput. Med. Imaging Graph. 35(2), 137–143 (2011)CrossRefGoogle Scholar
  44. 44.
    Serrano, C., Acha, B.: Pattern analysis of dermoscopic images based on Markov random fields. Pattern Recognit. 42, 1052–1057 (2009)CrossRefGoogle Scholar
  45. 45.
    Shrestha, B., Bishop, J., Kam, K., Chen, X., Moss, R.H., Stoecker, W.V., Umbaugh, S., Stanley, R.J., Celebi, M.E., Marghoob, A.A., Argenziano, G., Soyer, H.P.: Detection of atypical texture features in early malignant melanoma. Skin Res. Technol. 16(1), 60–65 (2010)CrossRefGoogle Scholar
  46. 46.
    Situ, N., Yuan, X., Zouridakis, G.: Boosting instance prototypes to detect local dermoscopic features. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, art. no. 5626776, pp. 5561–5564 (2010)Google Scholar
  47. 47.
    Skrovseth, S.O., Schopf, T.R., Thon, K., Zortea, M., Geilhufe, M., Mllersen, K., Kirchesch, H.M., Godtliebsen, F.: A computer aided diagnostic system for malignant melanomas. In: 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies. ISABEL, 2010, 5702825 (2010)Google Scholar
  48. 48.
    Steger, C.: An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intel. 20(2), 113–125 (1998)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Stoecker, W.V., Moss, R.H.: Editorial: digital imaging in dermatology. Comput. Med. Imaging Graph. 16(3), 145–150 (1992)CrossRefGoogle Scholar
  50. 50.
    Stoecker, W.V., Gupta, K., Stanley, R.J., Moss, R.H., Shrestha, B.: Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res. Technol. 11(3), 179–184 (2005)CrossRefGoogle Scholar
  51. 51.
    Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., Tanaka, M., Oka, H.: Pattern classification of nevus with texture analysis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings 26 II, pp. 1459–1462 (2004)Google Scholar
  52. 52.
    Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., Tanaka, M.: Pattern classification of nevus with texture analysis. IEEJ Trans. Electr. Electron. Eng. 3(1), 143–150 (2008)CrossRefGoogle Scholar
  53. 53.
    Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins, M.S.: Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans. Information Technology in Biomed. 15(4), 5763779, 622–629 (2011)Google Scholar
  54. 54.
    Wighton, P., Sadeghi, M., Lee, T.K., Atkins, M.S.: A fully automatic random walker segmentation for skin lesions in a supervised setting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS (PART 2), vol. 5762 , pp. 1108–1115. Springer, Heidelberg (2009)Google Scholar
  55. 55.
    Xia, Y., Feng, D., Zhao, R.: Adaptive segmentation of textured images by using the coupled Markov random field model. IEEE Trans. Image Proces. 11, 3559–3566 (2006)CrossRefGoogle Scholar
  56. 56.
    Yoshino, S., Tanaka, T., Tanaka, M., Oka, H.: Application of morphology for detection of dots in tumor. In: Proceedings of the SICE Annual Conference, WPI-3-3, pp. 407–410 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dpto. Teoría de la Señal y ComunicacionesUniversidad de Sevilla. Camino de los Descubrimientos s/nSevilleSpain

Personalised recommendations