Skip to main content

Pigment Network Detection and Analysis

  • Chapter
  • First Online:
  • 1597 Accesses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

We describe the importance of identifying pigment networks in lesions which may be melanomas, and survey methods for identifying pigment networks (PN) in dermoscopic images. We then give details of how machine learning can be used to classify images into three classes: PN Absent, Regular PN and Irregular PN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 62(1), 10–29 (2012)

    Google Scholar 

  2. Siegel, R., Naishadham, D., Jemal, A.: Cancer facts and figures, pp. 1–68. American Cancer Society, Atlanta. http://www.cancer.org/research/cancerfactsfigures/acspc-031941 (2012). Accessed 3 Dec 2012

  3. Koh, H.K., Miller, D.R., Geller, A.C., Clapp, R.W., Mercer, M.B., Lew, R.A.: Who discovers melanoma?: patterns from a population-based survey. J. Am. Acad. Dermatol. 26(6), 914–919 (1992)

    Article  Google Scholar 

  4. Stolz, W., Riemann, A., Cognetta, A.B., Pillet, L., Abmayr, W., Holzel, D., Bilek, P., Nachbar, F., Landthaler, M., Braun-Falco, O.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4(7), 521–527 (1994)

    Google Scholar 

  5. Menzies, S.W., Ingvar, C., Crotty, K.A., et al.: Frequency and morphologic characteristics of invasive melanoma lacking specific surface microscopy features. Arch. Dermatol. 132, 1178–1182 (1996)

    Article  Google Scholar 

  6. Kenet, R., Fitzpatrick, T.: Reducing mortality and morbidity of cutaneous melanoma: a six year plan. b) identifying high and low risk pigmented lesions using epiluminescence microscopy. J. Dermatol. 21(11), 881–884 (1994)

    Google Scholar 

  7. Argenziano, G., Soyer, H.P., et al.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J. Am. Acad. Dermatol. 48(5), 679–693 (2003)

    Article  Google Scholar 

  8. Argenziano, G., Soyer, H.P., De Giorgio, V., Piccolo, D., Carli, P., Delfino, M., Ferrari, A., Hofmann-Wellenhof, V., Massi, D., Mazzocchetti, G., Scalvenzi, M., Wolf, I.H.: Interactive Atlas of Dermoscopy (Book and CD-ROM). Edra medical publishing and new media, Milan (2000)

    Google Scholar 

  9. Soyer, H.P., Argenziano, G., Chimenti, S., Menzies, S.W., Pehamberger, H., Rabinovitz, H.S., Stolz, W., Kopf, A.W.: Dermoscopy of Pigmented Skin Lesions: An Atlas Based on the Consensus Net Meeting on Dermoscopy 2000. Edra, Milan (2001)

    Google Scholar 

  10. Stanganelli, I.: Dermoscopy. http://emedicine.medscape.com/article/1130783-overview (2010). Accessed 12 May 2011

  11. Celebi, M.E., Aslandogan, Y.A., Stoecker, W.V., Iyatomi, H., Oka, H., Chen, X.: Unsupervised border detection in dermoscopy images. Skin Res. Technol. 13(4), 454–462 (2007)

    Article  Google Scholar 

  12. Wighton, P., Sadeghi, M., Lee, T.K., Atkins, M.S.: A fully automatic random walker segmentation for skin lesions in a supervised setting. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 1108–1115 (2009)

    Google Scholar 

  13. Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33(2), 148–153 (2009)

    Article  Google Scholar 

  14. Lee, T.K., McLean, D.I., Atkins, M.S.: Irregularity index: a new border irregularity measure for cutaneous melanocytic lesions. Med. Image Anal. 7(1), 47–64 (2003)

    Article  Google Scholar 

  15. Fleming, M.G., Steger, C., et al.: Techniques for a structural analysis of dermatoscopic imagery. Comput. med. imaging graph. 22(5), 375–389 (1998)

    Article  Google Scholar 

  16. Grana, C., Cucchiara, R., Pellacani, G., Seidenari, S.: Line detection and texture characterization of network patterns. In: Proceedings of 18th International Conference on Pattern Recognition, ICPR 2006, vol. 2, pp. 275–278. IEEE, Washington (2006)

    Google Scholar 

  17. Fischer, S., Guillod, J., et al.: Analysis of skin lesions with pigmented networks. In: Proceeding of International Conference Image Processing, pp. 323–326 (1996)

    Google Scholar 

  18. Anantha, M., Moss, R.H., Stoecker, W.V.: Detection of pigment network in dermatoscopy images using texture analysis. Comput. Med. Imaging Graph. 28(5), 225–234 (2004)

    Article  Google Scholar 

  19. Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Sommella, P.: Dermoscopic image-analysis system: estimation of atypical pigment network and atypical vascular pattern. In: IEEE International Workshop on Medical Measurement and Applications, pp. 63–67. IEEE Computer Society, Washington (2006)

    Google Scholar 

  20. Di Leo, G., Liguori, C., Paolillo, A., Sommella, P.: An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesions. In: IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, pp. 190–194 (2008)

    Google Scholar 

  21. Shrestha, B., Bishop, J., Kam, K., Chen, X., Moss, R.H., Stoecker, W.V., Umbaugh, S., Stanley, R.J., Celebi, M.E., Marghoob, A.A., et al.: Detection of atypical texture features in early malignant melanoma. Skin Res. Technol. 16(1), 60–65 (2010)

    Article  Google Scholar 

  22. Serrano, C., Acha, B.: Pattern analysis of dermoscopic images based on markov random fields. Pattern Recogn. 42(6), 1052–1057 (2009)

    Article  Google Scholar 

  23. Barata, C., Marques, J.S., Rozeira, J.: A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans. Biomed. Eng. 59(10), 2744–2754 (2012)

    Article  Google Scholar 

  24. Nowak, L.A., Ogorzałek, M.J., Pawłowski, M.P.: Pigmented network structure detection using semi-smart adaptive filters. In: IEEE 6th International Conference on Systems Biology (ISB), pp. 310–314 (2012)

    Google Scholar 

  25. Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intell. Med. 56(2), 69–90 (2012)

    Article  Google Scholar 

  26. Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins, M.S.: Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans. Inf. Technol. Biomed. 15(4), 622–629 (2011)

    Article  Google Scholar 

  27. Sadeghi, M., Razmara, M., Ester, M., Lee, T.K., Atkins, M.S.: Graph-based pigment network detection in skin images. In: Proceeding of the SPIE Medical Imaging Conference, vol. 7623 (2010)

    Google Scholar 

  28. Sadeghi, M., Razmara, M., Lee, T.K., Atkins, M.S.: A novel method for detection of pigment network in dermoscopic images using graphs. Comput. Med. Imaging Graph. 35(2), 137–143 (2011)

    Article  Google Scholar 

  29. Sadeghi, M., Razmara, M., Wighton, P., Lee, T.K., Atkins, M.S.: Modeling the dermoscopic structure pigment network using a clinically inspired feature set. In: Medical Imaging and Augmented Reality, vol. 6326, pp. 467–474 (2010)

    Google Scholar 

  30. Pratt, W.K.: Digital Image Processing, 2nd edn. Wiley, New York (1991)

    Google Scholar 

  31. Kirk, J.: Count loops in a network. http://www.mathworks.com/matlabcentral/fx_files/10722/1/content/html/run_loops_html.html (2007). Accessed 12 May 2009

  32. Shih, T.Y.: The reversibility of six geometric color spaces. Photogram. Eng. Remote Sens. 61(10), 1223–1232 (1995)

    Google Scholar 

  33. Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  34. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1), 161–205 (2005)

    Article  MATH  Google Scholar 

  35. Goebel, M.: A survey of data mining and knowledge discovery software tools. ACM Special Interest Group Knowl. Discov. Data Min. Explor. Newsl. 1(1), 20–33 (1999)

    MathSciNet  Google Scholar 

  36. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sadeghi, M., Wighton, P., Lee, T.K., McLean, D., Lui, H., Atkins, M.S. (2014). Pigment Network Detection and Analysis. In: Scharcanski, J., Celebi, M. (eds) Computer Vision Techniques for the Diagnosis of Skin Cancer. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39608-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39608-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39607-6

  • Online ISBN: 978-3-642-39608-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics