Skip to main content

Molecular Genetics of Rare Lymphomas

  • Chapter
  • First Online:
Rare Lymphomas

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1113 Accesses

Abstract

Non-Hodgkin’s lymphoma represents a heterogeneous group of malignancies with diverse clinical manifestations, histologic characteristics, and biologic behavior. Recent improvements in pathologic diagnosis as well as the application of novel molecular biological techniques in clinical routine have led to the distinction of various subtypes of malignant lymphoma that occur at rather low frequencies. These lymphoma subtypes are here referred to as “rare lymphomas”.

A correct pathologic diagnosis of these uncommon entities is a prerequisite for adequate treatment strategies especially as a significant number of these “rare lymphoma” subtypes are characterized by adverse survival. Therefore, a better understanding of the biology of these entities is critically warranted to substantially improve prognosis. This chapter summarizes current concepts of our understanding of the molecular pathogenesis of “rare lymphomas” subtypes. This is exemplified by focusing on selected subtypes, namely, primary mediastinal B-cell lymphoma, Burkitt lymphoma, and mantle cell lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks PM, Chan J, Cleary ML et al (1992) Mantle cell lymphoma. A proposal for unification of morphologic, immunologic, and molecular data. Am J Surg Pathol 16:637–640

    Article  CAS  PubMed  Google Scholar 

  • Bea S, Tort F, Pinyol M et al (2001) BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61:2409–2412

    CAS  PubMed  Google Scholar 

  • Bea S, Zettl A, Wright G et al (2005) Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106:3183–3190

    Article  CAS  PubMed  Google Scholar 

  • Bhatia KG, Gutierrez MI, Huppi K et al (1992) The pattern of p53 mutations in Burkitt’s lymphoma differs from that of solid tumors. Cancer Res 52:4273–4276

    CAS  PubMed  Google Scholar 

  • Blum KA, Lozanski G, Byrd JC (2004) Adult Burkitt leukemia and lymphoma. Blood 104:3009–3020

    Article  CAS  PubMed  Google Scholar 

  • Bodrug SE, Warner BJ, Bath ML et al (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. Embo J 13:2124–2130

    CAS  PubMed  Google Scholar 

  • Campo E, Raffeld M, Jaffe ES (1999) Mantle-cell lymphoma. Semin Hematol 36:115–127

    CAS  PubMed  Google Scholar 

  • Capoulade C, Bressac-de Paillerets B, Lefrere I et al (1998) Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene 16:1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Cato MH, Chintalapati SK, Yau IW et al (2011) Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol Cell Biol 31:127–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Compagno M, Lim WK, Grunn A et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459:717–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J et al (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79:7824–7827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalla-Favera R, Martinotti S, Gallo RC et al (1983) Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219:963–967

    Article  CAS  PubMed  Google Scholar 

  • Dave SS, Fu K, Wright GW et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442

    Article  CAS  PubMed  Google Scholar 

  • Dreyling M, Hiddemann W (2009) Current treatment standards and emerging strategies in mantle cell lymphoma. Hematology Am Soc Hematol Educ Program:542–551

    Google Scholar 

  • Dupire S, Coiffier B (2010) Targeted treatment and new agents in diffuse large B cell lymphoma. Int J Hematol 92:12–24

    Article  CAS  PubMed  Google Scholar 

  • Farrell PJ, Allan GJ, Shanahan F et al (1991) p53 is frequently mutated in Burkitt’s lymphoma cell lines. EMBO J 10:2879–2887

    CAS  PubMed  Google Scholar 

  • Fu K, Weisenburger DD, Greiner TC et al (2005) Cyclin D1-negative mantle cell lymphoma: a clinicopathological study based on gene expression profiling. Blood 106:4315–4321

    Article  CAS  PubMed  Google Scholar 

  • Gerbitz A, Mautner J, Geltinger C et al (1999) Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt’s lymphoma. Oncogene 18:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Gesk S, Klapper W, Martin-Subero JI et al (2006) A chromosomal translocation in cyclin D1-negative/cyclin D2-positive mantle cell lymphoma fuses the CCND2 gene to the IGK locus. Blood 108:1109–1110

    Article  CAS  PubMed  Google Scholar 

  • Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228:273–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greiner TC, Moynihan MJ, Chan WC et al (1996) p53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis. Blood 87:4302–4310

    CAS  PubMed  Google Scholar 

  • Hartmann EM, Campo E, Wright G et al (2010) Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 116:953–961

    Article  CAS  PubMed  Google Scholar 

  • Hernandez L, Bea S, Pinyol M et al (2005) CDK4 and MDM2 gene alterations mainly occur in highly proliferative and aggressive mantle cell lymphomas with wild-type INK4a/ARF locus. Cancer Res 65:2199–2206

    Article  CAS  PubMed  Google Scholar 

  • Hummel M, Bentink S, Berger H et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419–2430

    Article  CAS  PubMed  Google Scholar 

  • Isaacson PG, Norton AJ, Addis BJ (1987) The human thymus contains a novel population of B lymphocytes. Lancet 2:1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sanada M, Kato I et al (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459:712–716

    Article  CAS  PubMed  Google Scholar 

  • Klangby U, Okan I, Magnusson KP et al (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91:1680–1687

    CAS  PubMed  Google Scholar 

  • Knowles DM (1996) Etiology and pathogenesis of AIDS-related non–Hodgkin’s lymphoma. Hematol Oncol Clin North Am 10:1081–1109

    Article  CAS  PubMed  Google Scholar 

  • Kridel R, Meissner B, Rogic S et al (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Lam LT, Davis RE, Wright G et al (2005) Small molecule inhibitors of IkB-kinase are selectively toxic for subgroups of diffuse large B cell lymphoma defined by gene expression profiling. Clin Cancer Res 11:28–40

    Article  CAS  PubMed  Google Scholar 

  • Lenz G, Wright GW, Emre NC et al (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105:13520–13525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovec H, Grzeschiczek A, Kowalski MB et al (1994) Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 13:3487–3495

    CAS  PubMed  Google Scholar 

  • Melzner I, Bucur AJ, Bruderlein S et al (2005) Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105:2535–2542

    Article  CAS  PubMed  Google Scholar 

  • Mestre C, Rubio-Moscardo F, Rosenwald A et al (2005) Homozygous deletion of SOCS1 in primary mediastinal B-cell lymphoma detected by CGH to BAC microarrays. Leukemia 19:1082–1084

    Article  CAS  PubMed  Google Scholar 

  • Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990

    Article  CAS  PubMed  Google Scholar 

  • Neri A, Barriga F, Knowles DM et al (1988) Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A 85:2748–2752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neri A, Barriga F, Inghirami G et al (1991) Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77:1092–1095

    CAS  PubMed  Google Scholar 

  • Nogai H, Dorken B, Lenz G (2011) Pathogenesis of non-Hodgkin’s lymphoma. J Clin Oncol 29:1803–1811

    Article  CAS  PubMed  Google Scholar 

  • Novak U, Rinaldi A, Kwee I et al (2009) The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113:4918–4921

    Article  CAS  PubMed  Google Scholar 

  • Pinyol M, Hernandez L, Cazorla M et al (1997) Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 89:272–280

    CAS  PubMed  Google Scholar 

  • Pinyol M, Bea S, Pla L et al (2007) Inactivation of RB1 in mantle cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood 109(12):5422–5429

    Article  CAS  PubMed  Google Scholar 

  • Ramiro AR, Jankovic M, Callen E et al (2006) Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440:105–109

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald A, Wright G, Leroy K et al (2003a) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenwald A, Wright G, Wiestner A et al (2003b) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3:185–197

    Article  CAS  PubMed  Google Scholar 

  • Rudelius M, Pittaluga S, Nishizuka S et al (2006) Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108:1668–1676

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Emre NC, Kruhlak MJ et al (2010) Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18:590–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sander S, Calado DP, Srinivasan L et al (2012) Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22:167–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savage KJ, Monti S, Kutok JL et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102:3871–3879

    Article  CAS  PubMed  Google Scholar 

  • Scarpa A, Moore PS, Rigaud G et al (1999) Molecular features of primary mediastinal B-cell lymphoma: involvement of p16INK4A, p53 and c-myc. Br J Haematol 107:106–113

    Article  CAS  PubMed  Google Scholar 

  • Schaffner C, Idler I, Stilgenbauer S et al (2000) Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci U S A 97:2773–2778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz R, Hansmann ML, Bohle V et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206:981–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz R, Young RM, Ceribelli M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490:116–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    Article  CAS  PubMed  Google Scholar 

  • Steidl C, Shah SP, Woolcock BW et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taub R, Kirsch I, Morton C et al (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79:7837–7841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsang P, Cesarman E, Chadburn A et al (1996) Molecular characterization of primary mediastinal B cell lymphoma. Am J Pathol 148:2017–2025

    CAS  PubMed  Google Scholar 

  • van Besien K, Kelta M, Bahaguna P (2001) Primary mediastinal B-cell lymphoma: a review of pathology and management. J Clin Oncol 19:1855–1864

    PubMed  Google Scholar 

  • Weniger MA, Melzner I, Menz CK et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684

    Article  CAS  PubMed  Google Scholar 

  • Weniger MA, Gesk S, Ehrlich S et al (2007) Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer 46:406–415

    Article  CAS  PubMed  Google Scholar 

  • Wessendorf S, Barth TF, Viardot A et al (2007) Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia 21:2463–2469

    Article  CAS  PubMed  Google Scholar 

  • Wlodarska I, Dierickx D, Vanhentenrijk V et al (2008) Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood 111:5683–5690

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Lenz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wenzel, SS., Lenz, G. (2014). Molecular Genetics of Rare Lymphomas. In: Dreyling, M., Williams, M. (eds) Rare Lymphomas. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39590-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39590-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39589-5

  • Online ISBN: 978-3-642-39590-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics