Skip to main content

Spatial Features of the Dressed Photon and its Mathematical Scientific Model

  • Chapter
  • First Online:
Dressed Photons

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 1269 Accesses

Abstract

After Sect. 2.2 in Chap. 2 reviewed the spatial features of the dressed photon (DP), Chap. 37 reviewed its temporal features, which enabled analysis of the DP-mediated energy transfer. In the present chapter, the spatial features of the DP are discussed again in order to demonstrate some novel applications. Furthermore, relevant mathematical scientific models are described, and these are effectively used for analyzing the spatial features of the autonomous annihilation and creation of dressed-photon–phonons (DPPs), described in Sects. 6.3, 7.2, and 7.3.

Ars longa, vita brevis. Lucius Annaeus Seneca, De Brevitate Vitae, 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These optical responses can be understood by expressing the spatial distribution of the electronic charges as electric dipoles induced at the apexes of the right triangles under light illumination, as will also be shown in Sect. 8.2. That is, since the two triangles are arranged to face in the same direction in Shape 1, two mutually parallel electric dipoles are induced, as shown in the upper part of Fig. 8.7a. From this pair of parallel electric dipole moments, a large electric field is generated, which is easily detected in the second layer. Thus, parallel electric dipoles correspond to the bright state in Sect. 3.1 of Chap. 3. On the other hand, in Shape 2, the triangles are opposed to each other. Thus, the two induced electric dipoles are in an anti-parallel alignment, as shown in the lower part of Fig. 8.7a, forming an electric quadrupole. Since the electric fields generated from these anti-parallel electric dipoles cancel each other out, they cannot be detected in the second layer, corresponding to the dark state in Sect. 3.1.

  2. 2.

    This conversion has also been seen in the energy transfer from a small QD to a large QD, as was described in Chap. 3. The (1, 1, 1) and (2, 1, 1) energy levels of the cubic small and large QDs are electric dipole-allowed and -forbidden, respectively, corresponding to two electric dipoles respectively aligned in parallel and anti-parallel directions. Therefore, the energy transfer from the (1, 1, 1) energy level in the small QD to the (2, 1, 1) energy level in the large QD corresponds to the conversion from the electric dipole to the electric quadrupole. Furthermore, the subsequent relaxation from the (2, 1, 1) energy level to the (1, 1, 1) energy level in the large QD corresponds to the conversion from the electric quadrupole to the electric dipole.

  3. 3.

    Although a probe is used here for confirming the phase transition, it is not required to read out the transcripted area after it is magnified.

References

  1. J. Lim, T. Yatsui, M. Ohtsu, IEICE Trans. Electron. E88-C, 1832 (2005)

    Google Scholar 

  2. M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996)

    Article  ADS  Google Scholar 

  3. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, Opt. Express 13, 9265 (2005)

    Article  ADS  Google Scholar 

  4. N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Appl. Phys. B 96, 1 (2009)

    Article  ADS  Google Scholar 

  5. M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, M. Ohtsu, IEEE Trans. Nanotechnol. 7, 14 (2008)

    Article  ADS  Google Scholar 

  6. M. Naruse, T. Yatsui, J.H. Kim, M. Ohtsu, Appl. Phys. Express 1, 062004 (2008)

    Article  ADS  Google Scholar 

  7. M. Naruse, T. Inoue, H. Hori, Jpn. J. Appl. Phys. 46, 6095 (2007)

    Article  ADS  Google Scholar 

  8. N. Tate, W. Nomura, T. Yatsui, M. Naruse, M. Ohtsu, Opt. Express 16, 607 (2008)

    Article  ADS  Google Scholar 

  9. N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, M. Ohtsu, Opt. Express 18, 7497 (2010)

    Article  Google Scholar 

  10. T. Matsumoto, J. Appl. Phys. Jpn. 80, 30 (2011)

    Google Scholar 

  11. M. Naruse, T. Yatsui, H. Hori, M. Yasui, M. Ohtsu, J. Appl. Phys. 103, 113525 (2008)

    Article  ADS  Google Scholar 

  12. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Opt. Express 17, 11113 (2009)

    Article  ADS  Google Scholar 

  13. N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S. Ohkoshi, M. Ohtsu, Appl. Phys. B 98, 685 (2009)

    Article  ADS  Google Scholar 

  14. O. Sato, S. Hayashi, Y. Einaga, Z.Z. Gu, Bull. Chem. Soc. Jpn. 76, 443 (2003)

    Article  Google Scholar 

  15. H. Tokoro, T. Matsuda, T. Nuida, Y. Morimoto, K. Ohyama, E.D.L.D. Dangui, K. Boukheddaden, S. Ohkoshi, Chem. Mater. 20, 423 (2008)

    Article  Google Scholar 

  16. S. Ohkoshi, H. Tokoro, M. Utsunomiya, M. Mizuno, M. Abe, K. Hashimoto, J. Phys. Chem. B 106, 2423 (2002)

    Article  Google Scholar 

  17. H. Tokoro, S. Ohkoshi, T. Matsuda, K. Hashimoto, Inorg. Chem. 43, 5231 (2004)

    Article  Google Scholar 

  18. H. Tokoro, T. Matsuda, K. Hashimoto, S. Ohkoshi, J. Appl. Phys. 97, 10M508 (2005)

    Google Scholar 

  19. J. Tanida, Y. Ichioka, Appl. Opt. 27, 2926 (1988)

    Article  ADS  Google Scholar 

  20. M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Select. Top. Quantum Electron. 14, 1404 (2008)

    Article  Google Scholar 

  21. B. Lee, J. Kang, K.-Y. Kim, Proc. SPIE 4803, 220 (2002)

    Article  Google Scholar 

  22. N. Tate, M. Naruse, W. Nomura, T. Kawazoe, T. Yatsui, M. Hoga, Y. Ohyagi, Y. Sekine, H. Fujita, M. Ohtsu, Opt. Express 19, 18260 (2011)

    Article  ADS  Google Scholar 

  23. M. Naruse, T. Yatsui, H. Hori, K. Kitamura, M. Ohtsu, Opt. Express 15, 11790 (2007)

    Article  ADS  Google Scholar 

  24. Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnol 22, 215605 (2011)

    Article  ADS  Google Scholar 

  25. M. Naruse, Y. Liu, W. Nomura, T. Yatsui, M. Aida, L.B. Kish, M. Ohtsu, Appl. Phys. Lett. 100, 193106 (2012)

    Article  ADS  Google Scholar 

  26. T. Yatsui, W. Nomura, M. Ohtsu, Nano Lett. 5, 2548 (2005)

    Article  ADS  Google Scholar 

  27. T. Yatsui, S. Takubo, J. Lim, W. Nomura, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 83, 1716 (2003)

    Article  ADS  Google Scholar 

  28. M. Naruse, T. Kawazoe, T. Yatsui, N. Tate, M. Ohtsu, Appl. Phys. B 105, 185 (2011)

    Article  ADS  Google Scholar 

  29. P. Bak, C. Tang, K. Wiezenfeld, Phys. Rev. A 38, 364 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichi Ohtsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohtsu, M. (2014). Spatial Features of the Dressed Photon and its Mathematical Scientific Model. In: Dressed Photons. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39569-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39569-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39568-0

  • Online ISBN: 978-3-642-39569-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics