Incremental Truth Discovery for Information from Multiple Data Sources

  • Li Jia
  • Hongzhi Wang
  • Jianzhong Li
  • Hong Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7901)


In practice, input data may come incrementally during data integration, static algorithm can’t adapt for this situation. So, to make truth discovery algorithm more practical, we present an incremental strategy in multisource integration using boosting like ensemble classifier. Our algorithm is adaptive for different update situations by considering concept drift in learning process. Our based model can treat entities inconsistently for a source also. These make truth finding more effective without repetitive computation.


Truth finding concept drift data integration incremental algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Corte, E., Op’t Eynde, P., Verschaffel, L.: Knowing what to believe (when you already know something). In: COLING 2010 Proceedings of the 23rd International Conference on Computational Linguistics, pp. 877–885. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  2. 2.
    Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information providers on the Web. In: Proc. of SIGKDD (2007)Google Scholar
  3. 3.
    Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: the role of source dependence. PVLDB, 2(1-2) (2009)Google Scholar
  4. 4.
    Zhao, B., Rubinstein, B.I.P., Gemmell, J., Han, J.: A Bayesian approach to discovering truth from conflicting sources for data integration. J. Proceedings of the VLDB Endowment Hompage Archive 5(6), 550–561 (2012)Google Scholar
  5. 5.
    Balakrishnan, R., Kambhampati, S.: SourceRank relevance and trust assessment for deep web sources based on inter-source agreement. In: WWW 2011 Proceedings of the 20th International Conference on World wide Web, pp. 227–236 (2011)Google Scholar
  6. 6.
    Wu, J., Ding, D., Hua, X.S., Zhang, B.: Tracking concept drifting with an online-optimized incremental learning framework. In: SIGMM, pp. 33–40 (2005)Google Scholar
  7. 7.
    Scholz, M., Klinkenberg, R.: Boosting Classifiers for Drifting Concepts. J. Intelligent Data Analysis 11, 3–28 (2007)Google Scholar
  8. 8.
    Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information from disagreeing views. In: WSDM, pp. 131–140 (2010)Google Scholar
  9. 9.
    Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information from disagreeing views. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 131–140. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Li Jia
    • 1
  • Hongzhi Wang
    • 1
  • Jianzhong Li
    • 1
  • Hong Gao
    • 1
  1. 1.Harbin Institute of TechnologyChina

Personalised recommendations