Advertisement

A Cognitive Architecture Based on Dual Process Theory

  • Claes Strannegård
  • Rickard von Haugwitz
  • Johan Wessberg
  • Christian Balkenius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7999)

Abstract

This paper proposes a cognitive architecture based on Kahneman’s dual process theory [1]. The long-term memory is modeled as a transparent neural network that develops autonomously by interacting with the environment. The working memory is modeled as a buffer containing nodes of the long-term memory. Computations are defined as processes in which working memory content is transformed according to rules that are stored in the long-term memory. In this architecture, symbolic and subsymbolic reasoning steps can be combined and resource-bounded computations can be defined ranging from formal proofs to association chains.

Keywords

cognitive architecture dual process theory computation transparent neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahneman, D.: A perspective on judgment and choice: mapping bounded rationality. American Psychologist 58, 697 (2003)CrossRefGoogle Scholar
  2. 2.
    Goertzel, B.: Perception processing for general intelligence: Bridging the symbolic/subsymbolic gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 79–88. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Strannegård, C., Häggström, O., Wessberg, J., Balkenius, C.: Transparent neural networks: Integrating concept formation and reasoning. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 302–311. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Strannegård, C., Ulfsbäcker, S., Hedqvist, D., Gärling, T.: Reasoning Processes in Propositional Logic. Journal of Logic, Language and Information 19(3), 283–314 (2010)MATHCrossRefGoogle Scholar
  5. 5.
    Strannegård, C., Engström, F., Nizamani, A.R., Rips, L.: Reasoning about truth in first-order logic. Journal of Logic, Language and Information, 1–23 (2013)Google Scholar
  6. 6.
    Strannegård, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method for number sequence problems. Cognitive Systems Research (2012)Google Scholar
  7. 7.
    Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and synthetic systems. Adaptive Behavior 20(2), 81–103 (2012)CrossRefGoogle Scholar
  8. 8.
    Miller, G.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81 (1956)CrossRefGoogle Scholar
  9. 9.
    Cowan, N.: Working memory capacity. Psychology Press, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Baars, B., Gage, N.: Cognition, brain, and consciousness: Introduction to cognitive neuroscience. Academic Press (2010)Google Scholar
  11. 11.
    Wixted, J.: The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55, 235–269 (2004)CrossRefGoogle Scholar
  12. 12.
    Ebbinghaus, H.: Memory: A contribution to experimental psychology. Number 3. Teachers college, Columbia university (1913)Google Scholar
  13. 13.
    Harrison, J.: Handbook of practical logic and automated reasoning. Cambridge University Press (2009)Google Scholar
  14. 14.
    Rumelhart, D., McClelland, J.: Parallel distributed processing: Psychological and biological models, vol. 2. The MIT Press (1986)Google Scholar
  15. 15.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)Google Scholar
  16. 16.
    Hawkins, J., George, D.: Hierarchical temporal memory - concepts, theory, and terminology. Technical report, Numenta, Inc. (2006)Google Scholar
  17. 17.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  18. 18.
    Gärdenfors, P.: Conceptual Spaces. MIT Press (2000)Google Scholar
  19. 19.
    d’Avila Garcez, A.S., Lamb, L.C.: Cognitive algorithms and systems: Reasoning and knowledge representation. In: Cutsuridis, V., Hussain, A., Taylor, J.G. (eds.) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems, pp. 573–600. Springer, New York (2011)CrossRefGoogle Scholar
  20. 20.
    Laird, J., Newell, A., Rosenbloom, P.: Soar: An Architecture for General Intelligence. Artificial Intelligence 33(3), 1–64 (1987)CrossRefGoogle Scholar
  21. 21.
    Anderson, J., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum, Mahwah (1998)Google Scholar
  22. 22.
    Bach, J.: The MicroPsi agent architecture. In: Proceedings of ICCM-5, International Conference on Cognitive Modeling, Bamberg, Germany, pp. 15–20 (2003)Google Scholar
  23. 23.
    Sun, R.: The importance of cognitive architectures: An analysis based on Clarion. Journal of Experimental & Theoretical Artificial Intelligence 19(2), 159–193 (2007)CrossRefGoogle Scholar
  24. 24.
    Gobet, F., Lane, P.C.: The CHREST architecture of cognition: the role of perception in general intelligence. Kitzelmann, E (2010)Google Scholar
  25. 25.
    Wang, P.: From nars to a thinking machine. In: Proceedings of the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006, pp. 75–93. IOS Press, Amsterdam (2007)Google Scholar
  26. 26.
    Simon, H., Newell, A.: Human problem solving: The state of the theory in 1970. American Psychologist; American Psychologist 26(2), 145 (1971)CrossRefGoogle Scholar
  27. 27.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems: Abstract properties and applications to term rewriting systems. Journal of the ACM (JACM) 27(4), 797–821 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claes Strannegård
    • 1
    • 2
  • Rickard von Haugwitz
    • 1
  • Johan Wessberg
    • 3
  • Christian Balkenius
    • 4
  1. 1.Department of Philosophy, Linguistics and Theory of ScienceUniversity of GothenburgSweden
  2. 2.Department of Applied Information TechnologyChalmers University of TechnologySweden
  3. 3.Institute of Neuroscience and PhysiologyUniversity of GothenburgSweden
  4. 4.Department of PhilosophyLund UniversitySweden

Personalised recommendations