Bounded Kolmogorov Complexity Based on Cognitive Models

  • Claes Strannegård
  • Abdul Rahim Nizamani
  • Anders Sjöberg
  • Fredrik Engström
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7999)


Computable versions of Kolmogorov complexity have been used in the context of pattern discovery [1]. However, these complexity measures do not take the psychological dimension of pattern discovery into account. We propose a method for pattern discovery based on a version of Kolmogorov complexity where computations are restricted to a cognitive model with limited computational resources. The potential of this method is illustrated by implementing it in a system used to solve number sequence problems. The system was tested on the number sequence problems of the IST IQ test [2], and it scored 28 out of 38 problems, above average human performance, whereas the mathematical software packages Maple, Mathematica, and WolframAlpha scored 9, 9, and 12, respectively. The results obtained and the generalizability of the method suggest that this version of Kolmogorov complexity is a useful tool for pattern discovery in the context of AGI.


artificial general intelligence cognitive model Kolmogorov complexity pattern discovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer (2008)Google Scholar
  2. 2.
    Amthauer, R., Brocke, B., Liepmann, D., Beauducel, A.: Intelligenz-Struktur-Test 2000 R, IST 2000R (2001)Google Scholar
  3. 3.
    Sjöberg, A., Sjöberg, S., Forssén, K.: Predicting Job Performance. Assessio International, Stockholm (2006)Google Scholar
  4. 4.
    Personaladministrativa Rådet: PA Number series, Stockholm, Sweden (1969)Google Scholar
  5. 5.
    Raven, J.C.: Standard Progressive Matrices Sets A, B, C, D & E. Oxford Psychologists Press Ltd. (1990)Google Scholar
  6. 6.
    Raven, J.C.: Advanced Progressive Matrices Set I. Oxford Psychologists Press Ltd. (1990)Google Scholar
  7. 7.
    Jensen, A.R.: Bias in mental testing. Free Press, New York (1980)Google Scholar
  8. 8.
    Sun, R., Giles, C.L. (eds.): Sequence Learning - Paradigms, Algorithms, and Applications. Springer, London (2001)Google Scholar
  9. 9.
    Bhansali, A., Skiena, S.S.: Analyzing integer sequences. In: Computational support for Discrete Mathematics: DIMACS Workshop, March 12-14, pp. 1–16. American Mathematical Society (1994)Google Scholar
  10. 10.
    Tetruashvili, S.: Inductive inference of integer sequences. Senior thesis, Computer Science Department - CarnegieMellon University (2010)Google Scholar
  11. 11.
    Holzman, T.G., Pellegrino, J.W., Glaser, R.: Cognitive variables in series completion. Journal of Educational Psychology 75(4), 603 (1983)CrossRefGoogle Scholar
  12. 12.
    LeFevre, J.A., Bisanz, J.: A cognitive analysis of number-series problems: Sources of individual differences in performance. Memory & Cognition 14, 287–298 (1986)CrossRefGoogle Scholar
  13. 13.
    Haverty, L.A., Koedinger, K.R., Klahr, D., Alibali, M.W.: Solving inductive reasoning problems in mathematics: not-so-trivial pursuit. Cognitive Science 24(2), 249–298 (2000)CrossRefGoogle Scholar
  14. 14.
    Hernandez-Orallo, J.: Beyond the Turing test. Journal of Logic, Language and Information 9(4), 447–466 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chater, N.: The search for simplicity: A fundamental cognitive principle? The Quarterly Journal of Experimental Psychology: Section A 52(2), 273–302 (1999)Google Scholar
  16. 16.
    Chater, N., Vitányi, P.: Simplicity: a unifying principle in cognitive science? Trends in Cognitive Sciences 7(1), 19–22 (2003)CrossRefGoogle Scholar
  17. 17.
    Dessalles, J.L.: Algorithmic simplicity and relevance. arXiv preprint arXiv:1208.1921 (2012)Google Scholar
  18. 18.
    Exner Jr, J.E.: The Rorschach: A comprehensive system. John Wiley & Sons Inc. (2003)Google Scholar
  19. 19.
    Strannegård, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method for number sequence problems. Cognitive Systems Research 22, 27–34 (2013)CrossRefGoogle Scholar
  20. 20.
    Strannegård, C., Cirillo, S., Ström, V.: An anthropomorphic method for progressive matrix problems. Cognitive Systems Research 22, 35–46 (2013)CrossRefGoogle Scholar
  21. 21.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81 (1956)CrossRefGoogle Scholar
  22. 22.
    Cowan, N.: Working memory capacity. Psychology Press, New York (2005)CrossRefGoogle Scholar
  23. 23.
    Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its applications. Springer (2008)Google Scholar
  24. 24.
    Siebers, M., Schmid, U.: Semi-analytic natural number series induction. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 249–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Mathematica: Version 8.0. Wolfram Research Inc., Champaign, Illinois (2012)Google Scholar
  26. 26.
    Wolfram Research, Inc.: Integer Sequences (2013), Published electronically at
  27. 27.
    Maple: Version 16.0. Maplesoft, Waterloo ON, Canada (2012)Google Scholar
  28. 28.
    Salvy, B., Zimmermann, P.: GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software (TOMS) 20, 163–177 (1994)zbMATHCrossRefGoogle Scholar
  29. 29.
    Sloane, N.J.A.: Online Encyclopedia of Integer Sequences (2005), Published electronically at
  30. 30.
    Wolfram Research, Inc.: Wolfram Alpha (2012), Published electronically at
  31. 31.
    Liepmann, D., Beauducel, A., Brocke, B., Amthauer, R.: Intelligenz-struktur-test 2000 r. manual. Hogrefe, Göttingen (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claes Strannegård
    • 1
    • 2
  • Abdul Rahim Nizamani
    • 3
  • Anders Sjöberg
    • 4
  • Fredrik Engström
    • 1
  1. 1.Department of Philosophy, Linguistics and Theory of ScienceUniversity of GothenburgSweden
  2. 2.Department of Applied Information TechnologyChalmers University of TechnologySweden
  3. 3.Department of Applied Information TechnologyUniversity of GothenburgSweden
  4. 4.Department of PsychologyUniversity of StockholmSweden

Personalised recommendations