Skip to main content

Tacit Knowledge Formalization to Support the Adoption Process of Software Quality Models

  • Conference paper
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2013)

Abstract

Due to the key role played by tacit knowledge in the adoption process of a quality model, this paper aims to present a first approach to formalize its expression so that it can be captured and stored for later reuse. It is propose to express tacit knowledge in the form of rules, and add a degree of belief to represent an expert judgment. The degree of belief is calculated by using the certainty factors theory to allow individual’s expertise to be used in the evaluation of the rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Minguet, J., Hernández, J.: La calidad del software y su medida, Editorial Universitaria Ramón Areces, Madrid, España (2003)

    Google Scholar 

  2. Naur, P., Randells, B. (eds.): Software Engineering: Report of a conference sponsored by the NATO Science Committee, Garmisch, Germany, Brussels, Scientific Affairs Division, NATO, October 7-11 (1969)

    Google Scholar 

  3. Niazi, M., Wilson, D., Zowghi, D., Wong, B.: A model for the implementation of software process improvement: An empirical study. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 1–16. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. De la Villa, M., Ruiz, M., Ramos, I.: Modelos de evaluación y mejora de procesos: análisis comparativo. In: 5th ADIS workshop (Apoyo a la Decisión en la Ingeniería del Software), Málaga, España (2004)

    Google Scholar 

  5. López, A., Cabrera, C., Valencia, L.: Introducción a la calidad de software. Scientia et Technica, pp. 326–331 (2008)

    Google Scholar 

  6. Oktaba, H., García, F., Piattini, M., Ruiz, F., Pino, F., Alquicira, C.: Software process improvement: the Competisoft Project. In: Computing Practices, pp. 21–28. IEEE Computer Society (2007)

    Google Scholar 

  7. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software process improvement implementation: an empiritcal study. Software Process: Improvement and Practice 2(11), 193–211 (2006)

    Article  Google Scholar 

  8. Larsen, E.A., Kautz, K.: Quality Assurance and Software Process Improvement in Norway. Software Process: Improvement and Practice, 71–86 (1997)

    Google Scholar 

  9. Humphrey, W., Snyder, T., Willis, R.: Software process improvement at Hughes Aircraft. IEEE Software 8(4), 11–23 (1991)

    Article  Google Scholar 

  10. Coleman, G., O’Connor, R.: Investigating software process in practice: a grounded theory perspective. Journal of Systems and Software, 772–784 (2008)

    Google Scholar 

  11. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory study of why organizations do not adopt CMMI. Journal of Systems and Software 80, 883–895 (2007)

    Article  Google Scholar 

  12. Wangenheim, C., Weber, S., Hauck, J., Trentin, G.: Experiences on establishing software processes in small companies. Information and Software Technology 48, 890–900 (2006)

    Article  Google Scholar 

  13. Hyde, K., Wilson, D.: Intangible benefits of CMM-based software process improvement. Software Process: Improvement and Practice, 217–228 (2004)

    Google Scholar 

  14. Zeineddine, R., Mansour, N.: Software Quality Improvement Model for Small Organizations. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 1027–1034. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Richardson: SPI models: what characteristics are required for small software development companies? Software Quality Journal 10, 100–113 (2002)

    Article  Google Scholar 

  16. Fayad, M., Laitinen, M., Ward, R.: Thinking objectively: software engineering in the small. Communications of the ACM, 115–118 (2000)

    Google Scholar 

  17. Al-Mashari, M., Ziari, M.: BPR implementation process: an analysis of key success and failure factors. Business Process Management Journal 5, 87–92 (1999)

    Article  Google Scholar 

  18. Badoo, N., Hall, T.: Demotivators of software process improvement: an analysis of practitioner’s view. Journal of System and Software 66, 23–33 (2003)

    Article  Google Scholar 

  19. Montoni, M., Miranda, R., Rocha, A.R., Travassos, G.H.: Knowledge acquisition and communities of practice: An approach to convert individual knowledge into multi-organizational knowledge. In: Melnik, G., Holz, H. (eds.) LSO 2004. LNCS, vol. 3096, pp. 110–121. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Niazi, M., Babar, M.: Demotivators of software process improvement: an analysis of Vietnamise practitioners’ view. In: International Conference on Product Focused Software Process

    Google Scholar 

  21. Johansen, J., Pries-Heje, J.: Success with improvement – requires the right roles to be enacted- in sysbiosis. Software process: improvement and practice 12, 529–539 (2007)

    Article  Google Scholar 

  22. Christiansen, M., Johansen, J.: ImprovAbility guidelines for low-maturity organizations. Improvement and Practice 13, 219–325 (2008)

    Google Scholar 

  23. Valtanen, A., Sihvonen, H.: Employess’ motivation for SPI: case study in a small finnish software company. In: O’Connor, R.V., Baddoo, N., Smolander, K., Messnarz, R. (eds.) EuroSPI 2008. CCIS, vol. 16, pp. 152–163. Springer, Heidelberg (2008)

    Google Scholar 

  24. Niazi, M., Muhammad, A., Nolin, M.: Demotivators of software process improvement: an empirical investigation. Software Process Improvement and Practice 13, 249–264 (2008)

    Article  Google Scholar 

  25. Messnarz, R.: Human resources based improvement strategies the learning factor. Software Process: Improvement and Practice 13, 355–362 (2008)

    Article  Google Scholar 

  26. Salazar, A.: Modelo de implantación de gestión del conocimiento y tecnologías de información para la generación de ventajas competitivas. Trabajo final para obtener el título de ingeniero civil informático, Universidad Técnica Federico Santa María, Valparaíso, Chile, p. 90 (2000)

    Google Scholar 

  27. Nonaka, I., Takeuchi, H.: The knowledge creation company: how japanese companies create the dynamics of innovation, p. 304. Oxford University Press, New York (1995)

    Google Scholar 

  28. Nonaka, I., Konno, N.: The concept of ‘Ba’: building a foundation for knowledge creation. California Management Review 40, 40–54 (1998)

    Article  Google Scholar 

  29. Busch, P., Dampney, C.: Graphically defining articulable Tacit Knowledge. In: VIP2000 Pan – Sydney Area Workshop on Visual Information Processing, December 1. University of Sydney (2000)

    Google Scholar 

  30. Busch, P., Richard, D., Dampney, C.: Visual Mapping of Articulable Tacit Knowledge. In: Australian Symposium on Information Visualisation, Conferences in Research and Practice Information Technology, Sydney, vol. 9 (December 2001)

    Google Scholar 

  31. Busch, P.: Knowledge Management Implications of Articulable Tacit Knowledge: Case Studies on its Diffusion. A dissertation submitted to Macquarie University for the Degree of Doctor of Philosophy in the Department of Computing, Division of Information and Communication Sciences (2004)

    Google Scholar 

  32. Negnevitsky, M.: Artificial Intelligence: A Guide to Intelligent Systems, 2nd edn. Addison Wesley Longman Publishing Co., Inc., Boston (2005)

    Google Scholar 

  33. Liu, W., Hughes, J., McTear, M.: Representing Heuristic knowledge and Propagating Beliefs in the Dempster-Shafer Theory of Evidence (1991)

    Google Scholar 

  34. Konar, A.: Artificial Intelligence and Soft Computing: Behavioral and Cognitive Modeling of the Human Brain. CRC Press LLC, Florida (2000)

    Google Scholar 

  35. Shortliffe, E., Buchanan, B.: A model of inexact reasoning in medicine. Mathematical Biosciences 23(3/4), 351–379 (1975)

    Article  MathSciNet  Google Scholar 

  36. Ng, K.-C., Abramson, B.: Uncertainty management in expert systems. IEEE Expert 5(2), 29–47 (1990)

    Article  Google Scholar 

  37. Durkin, J.: Expert Systems Design and Development. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ocegueda-Miramontes, V., Juárez-Ramírez, R. (2013). Tacit Knowledge Formalization to Support the Adoption Process of Software Quality Models. In: Qin, Z., Huynh, VN. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2013. Lecture Notes in Computer Science(), vol 8032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39515-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39515-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39514-7

  • Online ISBN: 978-3-642-39515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics