Skip to main content

A Role for Epigenetic Modulation of the Innate Immune Response During Aging

  • Chapter
  • First Online:
Immunology of Aging

Abstract

The ageing process results from a complex interplay between genes and the environment that can precipitate an uncontrolled inflammation. Epigenetic changes are believed to provide a link between the environment and nutrition to gene expression by altering the activity of some histone-modifying protein. Epigenetic modifications of DNA and histone proteins have been proposed as important contributory mechanisms to the retention of metabolic memory over time. A thorough understanding of the posttranscriptional and epigenetic factors involved in both normal ageing and age-related disease may inform new strategies and approaches to diagnose, treat, or suppress many aspects of age-dependent frailty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  PubMed  CAS  Google Scholar 

  • Bates DJ, Liang R, Li N et al (2009) The impact of noncoding RNA on the biochemical and molecular mechanisms of aging. Biochim Biophys Acta 1790:970–979

    Article  PubMed  CAS  Google Scholar 

  • Bocker MT, Hellwig I, Breiling A et al (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117:e182–e189

    Article  PubMed  CAS  Google Scholar 

  • Boehm M, Slack F (2005) Physiology: a developmental timing microRNA and its target regulate life span in C. Elegans. Science 310:1954–1957

    Article  PubMed  CAS  Google Scholar 

  • Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  PubMed  CAS  Google Scholar 

  • Butcher SK, Chahal H, Nayak L et al (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886

    PubMed  CAS  Google Scholar 

  • Chalmers J, Cooper ME (2008) UKPDS and the legacy effect. N Engl J Med 359:1618–1620

    Article  PubMed  CAS  Google Scholar 

  • Dasu MR, Jialal I (2011) Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab 300:E145–E154

    Article  PubMed  CAS  Google Scholar 

  • Dasu MR, Devaraj S, Zhao L et al (2008) High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57:3090–3098

    Article  PubMed  CAS  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  PubMed  CAS  Google Scholar 

  • Du T, Zamore PD (2007) Beginning to understand microRNA function. Cell Res 17:661–663

    Article  PubMed  CAS  Google Scholar 

  • Dunston CR, Griffiths HR (2010) The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol 161:407–416

    Article  PubMed  CAS  Google Scholar 

  • Flavell SJ, Hou TZ, Lax S et al (2008) Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol 153:S241–S246

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    Article  PubMed  CAS  Google Scholar 

  • Friedman RC, Farh KKH, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Bailey CJ, Griffiths HR (2009) Metabolic memory effect of the saturated fatty acid, palmitate, in monocytes. Biochem Biophys Res Commun 388:278–282

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Pararasa C, Dunston CR et al (2012) Palmitate promotes monocyte atherogenicity via de novo ceramide synthesis. Free Radic Biol Med 53:796–806

    Article  PubMed  CAS  Google Scholar 

  • Gomez CR, Hirano S, Cutro B et al (2007) Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care Med 35:246–251

    Article  PubMed  CAS  Google Scholar 

  • Gomez CR, Acuna-Castillo C, Perez C et al (2008) Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide. J Gerontol A Biol Sci Med Sci 63:1299–1306

    Article  PubMed  Google Scholar 

  • Gowers IR, Walters K, Kiss-Toth E et al (2011) Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine 56:792–797

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  • Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20:739–748

    Article  PubMed  CAS  Google Scholar 

  • Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85

    Article  PubMed  CAS  Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583:1713–1720

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Xiang Y, Wang D et al (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11(1):29–40

    Article  PubMed  CAS  Google Scholar 

  • Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3(10):1018–1027

    CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lehmann SM, Kruger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835

    Article  PubMed  CAS  Google Scholar 

  • Lepeule J, Baccarelli A, Motta V et al (2012) Gene promoter methylation is associated with lung function in the elderly: the Normative Aging Study. Epigenetics 7(3):261–269

    Article  PubMed  CAS  Google Scholar 

  • Liang SY, Mackowiak PA (2007) Infections in the elderly. Clin Geriatr Med 23:441–456

    Article  PubMed  Google Scholar 

  • Lord JM, Butcher S, Killampali V et al (2001) Neutrophil ageing and immunesenescence. Mech Ageing Dev 122:1521–1535

    Article  PubMed  CAS  Google Scholar 

  • Medawar PB (1952) An unsolved problem in biology. Lewis, London. Reprinted in Medawar PG (1981) The uniqueness of the individual. Dover, New York

    Google Scholar 

  • Meng L, Park J, Cai Q et al (2010) Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation. Am J Physiol Heart Circ Physiol 298:H736–H745

    Article  PubMed  CAS  Google Scholar 

  • Millard AL, Mertes PM, Ittelet D et al (2002) Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130:245–255

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481

    Article  PubMed  CAS  Google Scholar 

  • Nandy D, Janardhanan R, Mukhopadhyay D et al (2011) Effect of hyperglycemia on human monocyte activation. J Investig Med 59:661–667

    PubMed  CAS  Google Scholar 

  • Nimura K, Ura K, Kaneda Y (2010) Histone methyltransferases: regulation of transcription and contribution to human disease. J Mol Med (Berl) 88:1213–1220

    Article  CAS  Google Scholar 

  • Nyugen J, Agrawal S, Gollapudi S et al (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30:806–813

    Article  PubMed  CAS  Google Scholar 

  • Pagano G, Marena S, Scaglione L et al (1996) Insulin resistance shows selective metabolic and hormonal targets in the elderly. Eur J Clin Invest 26:650–656

    Article  PubMed  CAS  Google Scholar 

  • Panning B (2008) X-chromosome inactivation: the molecular basis of silencing. J Biol 7:30

    Article  PubMed  Google Scholar 

  • Pearl R (1928) The rate of living. University of London Press, London

    Google Scholar 

  • Rakyan VK, Down TA, Maslau S et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439

    Article  PubMed  CAS  Google Scholar 

  • Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263–273

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  • Schickel R, Boyerinas B, Park SM et al (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974

    Article  PubMed  CAS  Google Scholar 

  • Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Stenvinkel P, Karimi M, Johansson S et al (2007) Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease? J Intern Med 261(5):488–499

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Zhang F, Ge X et al (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319

    Article  PubMed  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Chang K-J et al (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol 49:493–500

    Article  PubMed  CAS  Google Scholar 

  • The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  • Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S et al (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  PubMed  CAS  Google Scholar 

  • Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815:75–89

    PubMed  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wu D, Lamon-Fava S et al (2009) In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. Br J Nutr 102:497–501

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8:832–843

    Article  PubMed  CAS  Google Scholar 

  • Wilson AG (2008) Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol 79:1514–1519

    Article  PubMed  CAS  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS et al (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2007) The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 282:34356–34364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding is gratefully acknowledged from the following sources BBSRC (JWK); BBSRC (SJB); Alzheimer’s Research UK (IHKD); FP7 MARK-AGE (EU FP7 Large-scale integrating Project HEALTH-F4-2008-2008800 (CRD); COST CM1001 and BM1203 (HRG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen R. Griffiths PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Killick, J.W., Bennett, S.J., Dias, I.H.K., Dunston, C.R., Griffiths, H.R. (2014). A Role for Epigenetic Modulation of the Innate Immune Response During Aging. In: Massoud, A., Rezaei, N. (eds) Immunology of Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39495-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39495-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39494-2

  • Online ISBN: 978-3-642-39495-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics