A Role for Epigenetic Modulation of the Innate Immune Response During Aging

  • Justin W. Killick
  • Stuart J. Bennett
  • Irundika H. K. Dias
  • Christopher R. Dunston
  • Helen R. GriffithsEmail author


The ageing process results from a complex interplay between genes and the environment that can precipitate an uncontrolled inflammation. Epigenetic changes are believed to provide a link between the environment and nutrition to gene expression by altering the activity of some histone-modifying protein. Epigenetic modifications of DNA and histone proteins have been proposed as important contributory mechanisms to the retention of metabolic memory over time. A thorough understanding of the posttranscriptional and epigenetic factors involved in both normal ageing and age-related disease may inform new strategies and approaches to diagnose, treat, or suppress many aspects of age-dependent frailty.


Histone Acetylation Histone Methylation Histone Protein Histone Acetyl Transferase Innate Immune Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding is gratefully acknowledged from the following sources BBSRC (JWK); BBSRC (SJB); Alzheimer’s Research UK (IHKD); FP7 MARK-AGE (EU FP7 Large-scale integrating Project HEALTH-F4-2008-2008800 (CRD); COST CM1001 and BM1203 (HRG).


  1. Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801PubMedCrossRefGoogle Scholar
  2. Bates DJ, Liang R, Li N et al (2009) The impact of noncoding RNA on the biochemical and molecular mechanisms of aging. Biochim Biophys Acta 1790:970–979PubMedCrossRefGoogle Scholar
  3. Bocker MT, Hellwig I, Breiling A et al (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117:e182–e189PubMedCrossRefGoogle Scholar
  4. Boehm M, Slack F (2005) Physiology: a developmental timing microRNA and its target regulate life span in C. Elegans. Science 310:1954–1957PubMedCrossRefGoogle Scholar
  5. Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840PubMedCrossRefGoogle Scholar
  6. Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015PubMedCrossRefGoogle Scholar
  7. Butcher SK, Chahal H, Nayak L et al (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886PubMedGoogle Scholar
  8. Chalmers J, Cooper ME (2008) UKPDS and the legacy effect. N Engl J Med 359:1618–1620PubMedCrossRefGoogle Scholar
  9. Dasu MR, Jialal I (2011) Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab 300:E145–E154PubMedCrossRefGoogle Scholar
  10. Dasu MR, Devaraj S, Zhao L et al (2008) High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57:3090–3098PubMedCrossRefGoogle Scholar
  11. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989PubMedCrossRefGoogle Scholar
  12. Du T, Zamore PD (2007) Beginning to understand microRNA function. Cell Res 17:661–663PubMedCrossRefGoogle Scholar
  13. Dunston CR, Griffiths HR (2010) The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol 161:407–416PubMedCrossRefGoogle Scholar
  14. Flavell SJ, Hou TZ, Lax S et al (2008) Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol 153:S241–S246PubMedCrossRefGoogle Scholar
  15. Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105PubMedCrossRefGoogle Scholar
  16. Friedman RC, Farh KKH, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedCrossRefGoogle Scholar
  17. Gao D, Bailey CJ, Griffiths HR (2009) Metabolic memory effect of the saturated fatty acid, palmitate, in monocytes. Biochem Biophys Res Commun 388:278–282PubMedCrossRefGoogle Scholar
  18. Gao D, Pararasa C, Dunston CR et al (2012) Palmitate promotes monocyte atherogenicity via de novo ceramide synthesis. Free Radic Biol Med 53:796–806PubMedCrossRefGoogle Scholar
  19. Gomez CR, Hirano S, Cutro B et al (2007) Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care Med 35:246–251PubMedCrossRefGoogle Scholar
  20. Gomez CR, Acuna-Castillo C, Perez C et al (2008) Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide. J Gerontol A Biol Sci Med Sci 63:1299–1306PubMedCrossRefGoogle Scholar
  21. Gowers IR, Walters K, Kiss-Toth E et al (2011) Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine 56:792–797PubMedCrossRefGoogle Scholar
  22. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedCrossRefGoogle Scholar
  23. Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901PubMedCrossRefGoogle Scholar
  24. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  25. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  26. Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20:739–748PubMedCrossRefGoogle Scholar
  27. Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85PubMedCrossRefGoogle Scholar
  28. Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583:1713–1720PubMedCrossRefGoogle Scholar
  29. Jiang M, Xiang Y, Wang D et al (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11(1):29–40PubMedCrossRefGoogle Scholar
  30. Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3(10):1018–1027Google Scholar
  31. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  32. Lehmann SM, Kruger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835PubMedCrossRefGoogle Scholar
  33. Lepeule J, Baccarelli A, Motta V et al (2012) Gene promoter methylation is associated with lung function in the elderly: the Normative Aging Study. Epigenetics 7(3):261–269PubMedCrossRefGoogle Scholar
  34. Liang SY, Mackowiak PA (2007) Infections in the elderly. Clin Geriatr Med 23:441–456PubMedCrossRefGoogle Scholar
  35. Lord JM, Butcher S, Killampali V et al (2001) Neutrophil ageing and immunesenescence. Mech Ageing Dev 122:1521–1535PubMedCrossRefGoogle Scholar
  36. Medawar PB (1952) An unsolved problem in biology. Lewis, London. Reprinted in Medawar PG (1981) The uniqueness of the individual. Dover, New YorkGoogle Scholar
  37. Meng L, Park J, Cai Q et al (2010) Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation. Am J Physiol Heart Circ Physiol 298:H736–H745PubMedCrossRefGoogle Scholar
  38. Millard AL, Mertes PM, Ittelet D et al (2002) Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130:245–255PubMedCrossRefGoogle Scholar
  39. Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481PubMedCrossRefGoogle Scholar
  40. Nandy D, Janardhanan R, Mukhopadhyay D et al (2011) Effect of hyperglycemia on human monocyte activation. J Investig Med 59:661–667PubMedGoogle Scholar
  41. Nimura K, Ura K, Kaneda Y (2010) Histone methyltransferases: regulation of transcription and contribution to human disease. J Mol Med (Berl) 88:1213–1220CrossRefGoogle Scholar
  42. Nyugen J, Agrawal S, Gollapudi S et al (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30:806–813PubMedCrossRefGoogle Scholar
  43. Pagano G, Marena S, Scaglione L et al (1996) Insulin resistance shows selective metabolic and hormonal targets in the elderly. Eur J Clin Invest 26:650–656PubMedCrossRefGoogle Scholar
  44. Panning B (2008) X-chromosome inactivation: the molecular basis of silencing. J Biol 7:30PubMedCrossRefGoogle Scholar
  45. Pearl R (1928) The rate of living. University of London Press, LondonGoogle Scholar
  46. Rakyan VK, Down TA, Maslau S et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439PubMedCrossRefGoogle Scholar
  47. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263–273PubMedCrossRefGoogle Scholar
  48. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323PubMedCrossRefGoogle Scholar
  49. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118PubMedCrossRefGoogle Scholar
  50. Schickel R, Boyerinas B, Park SM et al (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974PubMedCrossRefGoogle Scholar
  51. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236PubMedCrossRefGoogle Scholar
  52. Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953PubMedCrossRefGoogle Scholar
  53. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042PubMedCrossRefGoogle Scholar
  54. Stenvinkel P, Karimi M, Johansson S et al (2007) Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease? J Intern Med 261(5):488–499PubMedCrossRefGoogle Scholar
  55. Sun C, Zhang F, Ge X et al (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319PubMedCrossRefGoogle Scholar
  56. Taganov KD, Boldin MP, Chang K-J et al (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci 103:12481–12486PubMedCrossRefGoogle Scholar
  57. Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol 49:493–500PubMedCrossRefGoogle Scholar
  58. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRefGoogle Scholar
  59. Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465PubMedCrossRefGoogle Scholar
  60. Vabulas RM, Ahmad-Nejad P, Ghose S et al (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112PubMedCrossRefGoogle Scholar
  61. Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815:75–89PubMedGoogle Scholar
  62. Vaziri H, Dessain SK, Ng Eaton E et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159PubMedCrossRefGoogle Scholar
  63. Wang S, Wu D, Lamon-Fava S et al (2009) In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. Br J Nutr 102:497–501PubMedCrossRefGoogle Scholar
  64. Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8:832–843PubMedCrossRefGoogle Scholar
  65. Wilson AG (2008) Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol 79:1514–1519PubMedCrossRefGoogle Scholar
  66. Yeung F, Hoberg JE, Ramsey CS et al (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380PubMedCrossRefGoogle Scholar
  67. Zhang J (2007) The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 282:34356–34364PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Justin W. Killick
    • 1
  • Stuart J. Bennett
    • 1
  • Irundika H. K. Dias
    • 1
  • Christopher R. Dunston
    • 1
  • Helen R. Griffiths
    • 1
    Email author
  1. 1.Life and Health SciencesAston UniversityBirminghamUK

Personalised recommendations