Advertisement

Age-Associated Alterations of Pleiotropic Stem Cell and the Therapeutic Implication of Stem Cell Therapy in Aging

  • Ahmad MassoudEmail author
Chapter

Abstract

The regenerative capabilities of a living organism is determined by the ability and potential of its stem cells to replace damaged tissue or worn-out cells; therefore, all ageing phenomena, including tissue deterioration, cancer, and propensity to infections, can be interpreted as signs of ageing at the level of somatic stem cells. Understanding the molecular mechanisms underlying stem cell ageing and utilizing technological methods for regenerating stem cells enable us to develop effective treatment for large spectrum of age-associated disorders. The application of human pluripotent stem cells for the treatment of a wide variety of age-associated diseases requires the development of technologies to finely regulate their growth and differentiation.

Keywords

Stem Cell Satellite Cell Nucleotide Excision Repair Adult Stem Cell Stem Cell Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedCrossRefGoogle Scholar
  2. Bahlmann FH, De Groot K, Spandau JM et al (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103(3):921–926PubMedCrossRefGoogle Scholar
  3. Bahlmann FH, de Groot K, Mueller O et al (2005) Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45(4):526–529PubMedCrossRefGoogle Scholar
  4. Bakshi A, Keck CA, Koshkin VS et al (2005) Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Res 1065(1–2):8–19PubMedCrossRefGoogle Scholar
  5. Beerman I, Maloney WJ, Weissmann IL et al (2010) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22(4):500–506PubMedCrossRefGoogle Scholar
  6. Bender CF, Sikes ML, Sullivan R et al (2002) Cancer predisposition and hematopoietic failure in Rad50 (S/S) mice. Genes Dev 16(17):2237–2251PubMedCrossRefGoogle Scholar
  7. Berdyshev GD, Korotaev GK, Boiarskikh GV et al (1967) Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning. Biokhimiia 32(5):988–993PubMedGoogle Scholar
  8. Bjerknes M, Cheng H (1999) Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116(1):7–14PubMedCrossRefGoogle Scholar
  9. Blasco MA, Funk W, Villeponteau B et al (1995) Functional characterization and developmental regulation of mouse telomerase RNA. Science 269(5228):1267–1270PubMedCrossRefGoogle Scholar
  10. Brack AS, Rando TA (2007) Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev 3(3):226–237PubMedCrossRefGoogle Scholar
  11. Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810PubMedCrossRefGoogle Scholar
  12. Challen GA, Boles NC, Chambers SM et al (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6(3):265–278PubMedCrossRefGoogle Scholar
  13. Chen TL (2004) Inhibition of growth and differentiation of osteoprogenitors in mouse BM stromal cell cultures by increased donor age and glucocorticoid treatment. Bone 35(1):83–95PubMedCrossRefGoogle Scholar
  14. Chen C, Wang Y, Yang GY (2012) Stem cell-mediated gene delivering for the treatment of cerebral ischemia: progress and prospectives. Curr Drug Targets 14(1):81–89CrossRefGoogle Scholar
  15. Cipriani P, Carubbi F, Liakouli V et al (2012) Stem cells in autoimmune diseases: implications for pathogenesis and future trends in therapy. Autoimmun Rev 12:709–716PubMedCrossRefGoogle Scholar
  16. Conboy IM, Conboy MJ, Smythe GM et al (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577PubMedCrossRefGoogle Scholar
  17. Cutler C, Antin JH (2005) An overview of hematopoietic stem cell transplantation. Clin Chest Med 26(4):517–527, vPubMedCrossRefGoogle Scholar
  18. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110PubMedCrossRefGoogle Scholar
  19. Deng J, Petersen BE, Steindler DA et al (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24(4):1054–1064PubMedCrossRefGoogle Scholar
  20. Dimmeler S, Aicher A, Vasa M et al (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108(3):391–397PubMedGoogle Scholar
  21. Ding S, Schultz PG (2004) A role for chemistry in stem cell biology. Nat Biotechnol 22(7):833–840PubMedCrossRefGoogle Scholar
  22. Ding S, Schultz PG (2005) Small molecules and future regenerative medicine. Curr Top Med Chem 5(4):383–395PubMedCrossRefGoogle Scholar
  23. Donate LE, Blasco MA (2011) Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci 366(1561):76–84PubMedCrossRefGoogle Scholar
  24. Eguchi M, Masuda H, Asahara T (2007) Endothelial progenitor cells for postnatal vasculogenesis. Clin Exp Nephrol 11(1):18–25PubMedCrossRefGoogle Scholar
  25. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRefGoogle Scholar
  26. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159PubMedCrossRefGoogle Scholar
  27. Fellous TG, Guppy NJ, Brittan M et al (2007) Cellular pathways to beta-cell replacement. Diabetes Metab Res Rev 23(2):87–99PubMedCrossRefGoogle Scholar
  28. Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309(5738):1253–1256PubMedCrossRefGoogle Scholar
  29. Freitas AA, de Magalhaes JP (2011) A review and appraisal of the DNA damage theory of ageing. Mutat Res 728(1–2):12–22PubMedGoogle Scholar
  30. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438PubMedCrossRefGoogle Scholar
  31. Gago N, Perez-Lopez V, Sanz-Jaka JP et al (2009) Age-dependent depletion of human skin-derived progenitor cells. Stem Cells 27(5):1164–1172PubMedCrossRefGoogle Scholar
  32. Goyns MH (2002) Genes, telomeres and mammalian ageing. Mech Ageing Dev 123(7):791–799PubMedCrossRefGoogle Scholar
  33. Hasty P, Campisi J, Hoeijmakers J et al (2003) Aging and genome maintenance: lessons from the mouse? Science 299(5611):1355–1359PubMedCrossRefGoogle Scholar
  34. Hayflick L (1998) How and why we age. Exp Gerontol 33(7–8):639–653PubMedCrossRefGoogle Scholar
  35. Heiss C, Keymel S, Niesler U et al (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45(9):1441–1448PubMedCrossRefGoogle Scholar
  36. Herrera E, Samper E, Martin-Caballero J et al (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18(11):2950–2960PubMedCrossRefGoogle Scholar
  37. Ho AD, Punzel M (2003) Hematopoietic stem cells: can old cells learn new tricks? J Leukoc Biol 73(5):547–555PubMedCrossRefGoogle Scholar
  38. Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122PubMedCrossRefGoogle Scholar
  39. Ito K, Hirao A, Arai F et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002PubMedCrossRefGoogle Scholar
  40. Jones DL, Rando TA (2011) Emerging models and paradigms for stem cell ageing. Nat Cell Biol 13(5):506–512PubMedCrossRefGoogle Scholar
  41. Karlsson J, Petersen A, Gido G et al (2005) Combining neuroprotective treatment of embryonic nigral donor tissue with mild hypothermia of the graft recipient. Cell Transplant 14(5):301–309PubMedCrossRefGoogle Scholar
  42. Kawada H, Takizawa S, Takanashi T et al (2006) Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of BM-derived neuronal cells. Circulation 113(5):701–710PubMedCrossRefGoogle Scholar
  43. Kawamura A, Horie T, Tsuda I et al (2006) Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs 9(4):226–233PubMedCrossRefGoogle Scholar
  44. Kenyon J, Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res 35(22):7557–7565PubMedCrossRefGoogle Scholar
  45. Kim M, Moon HB, Spangrude GJ (2003) Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci 996:195–208PubMedCrossRefGoogle Scholar
  46. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMedCrossRefGoogle Scholar
  47. Lee HW, Blasco MA, Gottlieb GJ et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574PubMedCrossRefGoogle Scholar
  48. Lee JW, Harrigan J, Opresko PL et al (2005) Pathways and functions of the Werner syndrome protein. Mech Ageing Dev 126(1):79–86PubMedCrossRefGoogle Scholar
  49. Li Y, Hansotia T, Yusta B et al (2003) Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 278(1):471–478PubMedCrossRefGoogle Scholar
  50. Li H, Mitchell JR, Hasty P (2008) DNA double-strand breaks: a potential causative factor for mammalian aging? Mech Ageing Dev 129(7–8):416–424PubMedCrossRefGoogle Scholar
  51. Li Z, Liu C, Xie Z et al (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6(6):e20526PubMedCrossRefGoogle Scholar
  52. Lindvall O, Bjorklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1(4):382–393PubMedCrossRefGoogle Scholar
  53. Maegawa S, Hinkal G, Kim HS et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340PubMedCrossRefGoogle Scholar
  54. Marion RM, Blasco MA (2010) Telomere rejuvenation during nuclear reprogramming. Curr Opin Genet Dev 20(2):190–196PubMedCrossRefGoogle Scholar
  55. Mauch P, Botnick LE, Hannon EC et al (1982) Decline in BM proliferative capacity as a function of age. Blood 60(1):245–252PubMedGoogle Scholar
  56. Minatoguchi S, Takemura G, Chen XH et al (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109(21):2572–2580PubMedCrossRefGoogle Scholar
  57. Nagaya N, Fujii T, Iwase T et al (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287(6):H2670–H2676PubMedCrossRefGoogle Scholar
  58. Nijnik A, Woodbine L, Marchetti C et al (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447(7145):686–690PubMedCrossRefGoogle Scholar
  59. Nikkhah G, Olsson M, Eberhard J et al (1994) A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 63(1):57–72PubMedCrossRefGoogle Scholar
  60. Niwa H, Burdon T, Chambers I et al (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12(13):2048–2060PubMedCrossRefGoogle Scholar
  61. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190PubMedCrossRefGoogle Scholar
  62. Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized BM cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98(18):10344–10349PubMedCrossRefGoogle Scholar
  63. Peschanski M, Bachoud-Levi AC, Hantraye P (2004) Integrating fetal neural transplants into a therapeutic strategy: the example of Huntington’s disease. Brain 127(Pt 6):1219–1228PubMedCrossRefGoogle Scholar
  64. Qing Y, Lin Y, Gerson SL (2012) An intrinsic BM hematopoietic niche occupancy defect of HSC in scid mice facilitates exogenous HSC engraftment. Blood 119(7):1768–1771PubMedCrossRefGoogle Scholar
  65. Rodriguez-Rodero S, Fernandez-Morera JL, Fernandez AF et al (2010) Epigenetic regulation of aging. Discov Med 10(52):225–233PubMedGoogle Scholar
  66. Rossi DJ, Bryder D, Zahn JM et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199PubMedCrossRefGoogle Scholar
  67. Rossi DJ, Bryder D, Seita J et al (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–729PubMedCrossRefGoogle Scholar
  68. Rotman G, Shiloh Y (1997) Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays 19(10):911–917PubMedCrossRefGoogle Scholar
  69. Sarg B, Koutzamani E, Helliger W et al (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277(42):39195–39201PubMedCrossRefGoogle Scholar
  70. Sasaki T, Maier B, Bartke A et al (2006) Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5(5):413–422PubMedCrossRefGoogle Scholar
  71. Schachinger V, Assmus B, Britten MB et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699PubMedCrossRefGoogle Scholar
  72. Siegl-Cachedenier I, Flores I, Klatt P et al (2007) Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. J Cell Biol 179(2):277–290PubMedCrossRefGoogle Scholar
  73. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336PubMedGoogle Scholar
  74. Singec I, Jandial R, Crain A et al (2007) The leading edge of stem cell therapeutics. Annu Rev Med 58:313–328PubMedCrossRefGoogle Scholar
  75. Smith JR, Pochampally R, Perry A et al (2004) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from BM stroma. Stem Cells 22(5):823–831PubMedCrossRefGoogle Scholar
  76. Snyder EY, Yoon C, Flax JD et al (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci U S A 94(21):11663–11668PubMedCrossRefGoogle Scholar
  77. Stojkovic M, Lako M, Strachan T et al (2004) Derivation, growth and applications of human embryonic stem cells. Reproduction 128(3):259–267PubMedCrossRefGoogle Scholar
  78. Strehlow K, Werner N, Berweiler J et al (2003) Estrogen increases BM-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 107(24):3059–3065PubMedCrossRefGoogle Scholar
  79. Sun Y, Li W, Lu Z et al (2011) Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB J 25(5):1474–1485PubMedCrossRefGoogle Scholar
  80. Taraldsrud E, Grogaard HK, Solheim S et al (2009) Age and stress related phenotypical changes in BM CD34+ cells. Scand J Clin Lab Invest 69(1):79–84PubMedCrossRefGoogle Scholar
  81. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  82. Trowbridge JJ, Snow JW, Kim J et al (2009) DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5(4):442–449PubMedCrossRefGoogle Scholar
  83. Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31(1–2):295–301PubMedCrossRefGoogle Scholar
  84. Wang CH, Ciliberti N, Li SH et al (2004) Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy. Circulation 109(11):1392–1400PubMedCrossRefGoogle Scholar
  85. Wang J, Geiger H, Rudolph KL (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23(4):532–536PubMedCrossRefGoogle Scholar
  86. Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686PubMedCrossRefGoogle Scholar
  87. Weissman IL (2000a) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168PubMedCrossRefGoogle Scholar
  88. Weissman IL (2000b) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287(5457):1442–1446PubMedCrossRefGoogle Scholar
  89. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148PubMedCrossRefGoogle Scholar
  90. Woolthuis CM, de Haan G, Huls G (2011) Aging of hematopoietic stem cells: intrinsic changes or micro-environmental effects? Curr Opin Immunol 23(4):512–517PubMedCrossRefGoogle Scholar
  91. Ying QL, Nichols J, Chambers I et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292PubMedCrossRefGoogle Scholar
  92. Yoon SH, Shim YS, Park YH et al (2007) Complete spinal cord injury treatment using autologous BM cell transplantation and BM stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25(8):2066–2073PubMedCrossRefGoogle Scholar
  93. Zimmermann S, Martens UM (2005) Telomere dynamics in hematopoietic stem cells. Curr Mol Med 5(2):179–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations