Oxidative Stress and Aging

  • Behjat Al-Sadat Moayedi EsfahaniEmail author
  • Milad Mirmoghtadaei
  • Sima Balouchi Anaraki


Free radicals are molecules able to oxidize other molecules, and they can damage the cell membrane and the DNA. Although free radicals are results of normal metabolism, they can be taken in through different routes such as air or water pollutions and inappropriate diets. Free radicals can result in accelerated telomere shortening and can induce apoptosis. Although body has several antioxidant system, oxidative stress can be reduced by good habits like exercise and proper breathing techniques and exposure to clean environments and an appropriate diet. Various studies have demonstrated the role of antioxidants in prevention of different diseases such as diabetes, cataract, malignancies, rheumatoid arthritis, Alzheimer’s disease, Parkinson’s, cardiovascular diseases, and many other age-related disorders.


Oxidative Stress Reactive Oxygen Species Free Radical Systemic Lupus Erythematosus Telomere Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agarwal A, Gupta S, Sikka S (2006) The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol 18:325–332PubMedCrossRefGoogle Scholar
  2. Alidoost F, Gharagozloo M, Bagherpour B et al (2006) Effects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from beta-thalassemia major patients. Int Immunopharmacol 6:1305–1310PubMedCrossRefGoogle Scholar
  3. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744PubMedCrossRefGoogle Scholar
  4. Bagherpour B, Gharagozloo M, Moayedi B (2009) The influence of iron loading and iron chelation on the proliferation and telomerase activity of human peripheral blood mononuclear cells. Iran J Immunol 6(1):33–39PubMedGoogle Scholar
  5. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581PubMedGoogle Scholar
  6. Berger MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24(2):172–183PubMedCrossRefGoogle Scholar
  7. Cho YS, Moon HB (2010) The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res 2(3):183–187PubMedCrossRefGoogle Scholar
  8. Danielson P (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3(6):561–597PubMedCrossRefGoogle Scholar
  9. De Martinis M, Franceschi C, Monti D et al (2007) Apoptosis remodeling in immunosenescence: implication for strategies to delay aging. Curr Med Chem 14(13):1389–1397PubMedCrossRefGoogle Scholar
  10. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  11. Forsyth NR, Evans AP, Shay JW et al (2003) Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2(5):235–243PubMedCrossRefGoogle Scholar
  12. Fusco D, Colloca G, Lo Monaco MR et al (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2(3):377–387PubMedGoogle Scholar
  13. Gemma G (2010) Neuroimmunomodulation and aging. Aging Dis 1(3):169–172PubMedGoogle Scholar
  14. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268PubMedCrossRefGoogle Scholar
  15. Ginaldi L, De Martinis M, Moniti D et al (2005) Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 26(2):79–84PubMedCrossRefGoogle Scholar
  16. Goel R, Khanduja KL (1998) Oxidative stress-induced apoptosis – an overview. Curr Sci 75(12):1338Google Scholar
  17. Gutteridge JMC (1993) Free radicals in disease processes – a compilation of cause and consequence. Free Radic Res Commun 19:141–158PubMedCrossRefGoogle Scholar
  18. Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57(2):43–56CrossRefGoogle Scholar
  19. Jozwik M, Wolczynski S, Jozwik M et al (1999) Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod 5(5):409–413PubMedCrossRefGoogle Scholar
  20. King C, Rios G, Green M et al (2000) UDP-glucuronosyltransferases. Curr Drug Metab 1(2):143–161PubMedCrossRefGoogle Scholar
  21. Ku HH, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15(6):621–627PubMedCrossRefGoogle Scholar
  22. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  23. Pollack M, Leeuwenburgh C (1999) Handbook of oxidants and antioxidants in exercise. Elsevier, AmsterdamGoogle Scholar
  24. Ryan MJ, Dudash HJ, Docherty M et al (2010) Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp Gerontol 45(11):882–895PubMedCrossRefGoogle Scholar
  25. Sheehan D, Meade G, Foley V et al (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16PubMedCrossRefGoogle Scholar
  26. Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci. doi: 10.1155/2011/572634 PubMedGoogle Scholar
  27. Streit WJ, Xue QS (2010) The brain’s aging immune system. Aging Dis 1(3):254–261PubMedGoogle Scholar
  28. Sukkar SG, Rossi E (2003) Oxidative stress and nutritional prevention in autoimmune rheumatic disease. Autoimmun Rev 3:199–206CrossRefGoogle Scholar
  29. Tchirkov A, Lansdorp PM (2003) Role of oxidative stress in telomere shortening in cultured fibroblasts from normal individuals and patients with ataxia–telangiectasia. Hum Mol Genet 12(3):227–232PubMedCrossRefGoogle Scholar
  30. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  31. Van der Veen RC, Hinton DR, Incardonna F et al (1997) Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol 77:1–7PubMedCrossRefGoogle Scholar
  32. von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 908:99–110CrossRefGoogle Scholar
  33. Yokel RA (2006) Blood brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10(2–3):223–253PubMedGoogle Scholar
  34. Zarban A, Ziaee M (2008) Evaluation of antioxidant properties of silymarin and its potential to inhibit peroxyl radicals in vitro. Pak J Pharm Sci 21(3):249–254Google Scholar
  35. Zhu H, Belcher M, van der Harst P (2011) Healthy aging and disease: role for telomere biology? Clin Sci 120:427–440PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Behjat Al-Sadat Moayedi Esfahani
    • 1
    Email author
  • Milad Mirmoghtadaei
    • 2
  • Sima Balouchi Anaraki
    • 1
  1. 1.Department of ImmunologyIsfahan University of Medical SciencesIsfahanIran
  2. 2.Department of Clinical SciencesUniversity of SharjahSharjahUAE

Personalised recommendations