Diet and Immunosenescence

  • Giulia Accardi
  • Carmela Rita BalistreriEmail author
  • Calogero Caruso
  • Giuseppina Candore


Ageing is a systemic condition leading to a gradual loss of molecular and cellular fidelity. A feature of ageing is immunosenescence, consisting in several modifications that increase morbidity and mortality in elderly. Environment, genetic background, immune system, and intestinal microbiota play a fundamental role in immunosenescence. The development of a chronic, low-grade, inflammatory status, known as “inflamm-ageing,” is a typical aspect of immunosenescence mostly due to the pro-inflammatory cytokine production linked to the chronic antigenic load. Nutrition can act on ageing, immunity, and health in general. Unbalanced diet with an insufficient intake of micro- and macronutrient and vitamins is a major nutritional problem among elderly, resulting in a dramatic change in gut microbiota. Calorie restriction and long-term adherence to Mediterranean diet could prevent or manage age-related diseases and immunosenescence.


Calorie Restriction Mediterranean Diet Intestinal Microbiota Zinc Supplementation Zinc Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adolfsson O, Huber BT, Meydani SN (2001) Vitamin E-enhanced IL-2 production in old mice: naive but not memory T cells show increased cell division cycling and IL-2-producing capacity. J Immunol 167:3809–3817PubMedGoogle Scholar
  2. Ahmed T, Das SK, Golden JK et al (2009) Calorie restriction enhances T-cell-mediated immune response in adult overweight men and women. J Gerontol A Biol Sci Med Sci 64:107–1113Google Scholar
  3. Anderson RM, Shanmuganayagam D, Weindruch R (2009) Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol 37:47–51PubMedCrossRefGoogle Scholar
  4. Baldwin AS (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:649–681PubMedCrossRefGoogle Scholar
  5. Bengmark S (1998) Probiotics and prebiotics in prevention and treatment of gastrointestinal diseases. Gastroenterol Int 11:4–7Google Scholar
  6. Berry EM, Arnoni Y, Aviram M (2011) The middle eastern and biblical origins of the Mediterranean diet. Public Health Nutr 14:2288–2295PubMedCrossRefGoogle Scholar
  7. Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5:e10667PubMedCrossRefGoogle Scholar
  8. Biagi E, Candela M, Franceschi C et al (2011) The aging gut microbiota: new perspectives. Ageing Res Rev 10:428–429PubMedCrossRefGoogle Scholar
  9. Bogden JD, Oleske JM, Lavenhar MA et al (1990) Effects of one year of supplementation with zinc and other micronutrients on cellular immunity in the elderly. J Am Coll Nutr 9:214–225PubMedCrossRefGoogle Scholar
  10. Briefel RR, Bialostosky K, Kennedy-Stephenson J et al (2000) Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 130:1367–1373Google Scholar
  11. Candore G, Colonna-Romano G, Balistreri CR et al (2006) Biology of longevity: role of the innate immune system. Rejuvenation Res 9:143–148PubMedCrossRefGoogle Scholar
  12. Casal S, Malheiro R, Sendas A (2010) Olive oil stability under deep-frying conditions. Food Chem Toxicol 48:2972–2979PubMedCrossRefGoogle Scholar
  13. Castañer O, Fitó M, López-Sabater MC et al (2011) The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin Nutr 30:490–493PubMedCrossRefGoogle Scholar
  14. Chen J, Astle CM, Harrison DE (1998) Delayed immune aging in diet-restricted B6CBAT6 F1 mice is associated with preservation of naive T cells. J Gerontol A Biol Sci Med Sci 53:B330–B337PubMedCrossRefGoogle Scholar
  15. Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22:455–460PubMedCrossRefGoogle Scholar
  16. Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108:4586–4591PubMedCrossRefGoogle Scholar
  17. Corona G, Spencer JP, Dessì MA (2009) Extra virgin olive oil phenolics: absorption, metabolism, and biological activities in the GI tract: review. Toxicol Ind Health 25:285–293PubMedCrossRefGoogle Scholar
  18. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089PubMedCrossRefGoogle Scholar
  19. Csermely P, Somogyi J (1989) Zinc as a possible mediator of signal transduction in T lymphocytes. Acta Physiol Hung 74:195–199PubMedGoogle Scholar
  20. Csermely P, Szamel M, Resch K et al (1988) Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J Biol Chem 263:6487–6490PubMedGoogle Scholar
  21. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21:357–365PubMedCrossRefGoogle Scholar
  22. De Martinis M, Franceschi C, Monti D et al (2005) Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 579(10):2035–2039PubMedCrossRefGoogle Scholar
  23. De Martinis M, Franceschi C, Monti D et al (2006) Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 80:219–227PubMedCrossRefGoogle Scholar
  24. Duchateau J, Delepesse G, Vrijens R et al (1981) Beneficial effects of oral zinc supplementation on the immune response of old people. Am J Med 70:1001–1004PubMedCrossRefGoogle Scholar
  25. Duke RC, Chervenak R, Cohen JJ (1983) Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci U S A 80:6361–6365PubMedCrossRefGoogle Scholar
  26. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328:321–326PubMedCrossRefGoogle Scholar
  27. Forbes IJ, Zalewski PD, Giannakis C et al (1990) Interaction between protein kinase C and regulatory ligand is enhanced by a chelatable pool of cellular zinc. Biochim Biophys Acta 1053:113–117PubMedCrossRefGoogle Scholar
  28. Fortes C, Forastiere F, Agabiti N et al (1998) The effect of zinc and vitamin A supplementation on immune response in an older population. J Am Geriatr Soc 46:19–26PubMedGoogle Scholar
  29. Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176PubMedCrossRefGoogle Scholar
  30. Franceschi C, Bonafe M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  31. Franceschi C, Capri M, Monti DI et al (2007) Inflamm-aging and anti-inflammaging: a systemic perspective on ageing and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105PubMedCrossRefGoogle Scholar
  32. Frazzini V, Rockabrand E, Mocchegiani E et al (2006) Oxidative stress and brain aging: is zinc the link? Biogerontology 7:307–314PubMedCrossRefGoogle Scholar
  33. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462PubMedCrossRefGoogle Scholar
  34. Fung TT, Hu FB, Wu K et al (2010) The Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets and colorectal cancer. Am J Clin Nutr 92:1429–1435PubMedCrossRefGoogle Scholar
  35. Gebremichael A, Levy EM, Corwin LM (1984) Adherent cell requirement for the effect of vitamin E on in vitro antibody synthesis. J Nutr 114:1297–1305PubMedGoogle Scholar
  36. Ginaldi L, De Martinis M, Monti D et al (2005) Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 26:79–84PubMedCrossRefGoogle Scholar
  37. Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152PubMedCrossRefGoogle Scholar
  38. Holzapfel WH, Haberer P, Snel J et al (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101PubMedCrossRefGoogle Scholar
  39. Isakov N, Altman A (2002) Protein kinase C (theta) in T cell activation. Annu Rev Immunol 20:761–794PubMedCrossRefGoogle Scholar
  40. Kaeberlein M, Powers RW, Steffen KK et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196PubMedCrossRefGoogle Scholar
  41. Keys A, Menotti A, Karvonen MJ et al (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124:903–915PubMedGoogle Scholar
  42. Kiremidjian-Schumacher L, Roy M (1998) Selenium and immune function. Z Ernahrungswiss 37:50–56PubMedGoogle Scholar
  43. Kowdley KV, Mason JB, Meydani SN et al (1992) Vitamin E deficiency and impaired cellular immunity related to intestinal fat malabsorption. Gastroenterology 102:2139–2142PubMedGoogle Scholar
  44. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18PubMedCrossRefGoogle Scholar
  45. McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of the life span and upon the ultimate body size. J Nutr 10:63–79Google Scholar
  46. Mena MP, Sacanella E, Vazquez-Agell M et al (2009) Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr 89:248–256PubMedCrossRefGoogle Scholar
  47. Meydani SN, Meydani M, Verdon CP et al (1986) Vitamin E supplementation suppresses prostaglandin E1(2) synthesis and enhances the immune response of aged mice. Mech Ageing Dev 34:191–201PubMedCrossRefGoogle Scholar
  48. Meydani SN, Han SN, Wu D (2005) Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol Rev 205:269–284PubMedCrossRefGoogle Scholar
  49. Murray M, Pizzorno J (1998) Encyclopedia of natural medicine. Prima Publishing, Rocklin, p 143Google Scholar
  50. Noack J, Kleessen B, Proll J et al (1998) Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr 128:1385–1391PubMedGoogle Scholar
  51. Opipari AW Jr, Boguski MS, Dixit VM (1990) The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265:14705–14708PubMedGoogle Scholar
  52. Pelucchi C, Bosetti C, Negri E (2010) Olive oil and cancer risk: an update of epidemiological findings through. Curr Pharm Des 17:805–812CrossRefGoogle Scholar
  53. Prasad AS, Fitzgerald JT, Hess JW et al (1993) Zinc deficiency in elderly patients. Nutrition 9:218–224PubMedGoogle Scholar
  54. Rink L, Haase H (2007) Zinc homeostasis and immunity. Trends Immunol 28:1–4PubMedCrossRefGoogle Scholar
  55. Rink L, Kirchner H (2000) Zinc-altered immune function and cytokine production. J Nutr 130:1407S–1411SPubMedGoogle Scholar
  56. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133PubMedCrossRefGoogle Scholar
  57. Sofi F, Cesari F, Abbate R et al (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344PubMedCrossRefGoogle Scholar
  58. Spaulding CC, Walford RL, Effros RB (1997) Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev 93:87–94PubMedCrossRefGoogle Scholar
  59. Stennicke HR, Salvesen GS (1997) Biochemical characteristics of caspases-3, -6, -7, and −8. J Biol Chem 272:25719–25723PubMedCrossRefGoogle Scholar
  60. Tan SL, Parker PJ (2003) Emerging and diverse roles of protein kinase C in immune cell signalling. Biochem J 376:545–552PubMedCrossRefGoogle Scholar
  61. Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9:107–116PubMedCrossRefGoogle Scholar
  62. Trichopoulou A, Naska A, Vasilopoulou E (2001) Guidelines for the intake of vegetables and fruit: the Mediterranean approach. Int J Vitam Nutr Res 71:149–153PubMedCrossRefGoogle Scholar
  63. Truong-Tran AQ, Carter J, Ruffin RE et al (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315–330PubMedCrossRefGoogle Scholar
  64. Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project. Nature 449:804–810PubMedCrossRefGoogle Scholar
  65. Tyrovolas S, Panagiotakos DB (2010) The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: a systematic review. Maturitas 65:122–130PubMedCrossRefGoogle Scholar
  66. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118PubMedGoogle Scholar
  67. Van Deventer SJ, Ten Cate JW, Tytgat GN (1988) Intestinal endotoxemia. Clinical significance. Gastroenterology 94:825–831PubMedGoogle Scholar
  68. Vasto S, Candore G, Balistreri CR et al (2007) Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128:83–91PubMedCrossRefGoogle Scholar
  69. Vasto S, Carruba G, Lio D et al (2009) Inflammation, ageing and cancer. Mech Ageing Dev 130:40–45PubMedCrossRefGoogle Scholar
  70. Vasto S, Rizzo C, Caruso C (2012) Centenarians and diet: what they eat in the Western part of Sicily. Immun Ageing 9:10PubMedCrossRefGoogle Scholar
  71. Vrieze A, Holleman F, Zoetendal EG et al (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613PubMedCrossRefGoogle Scholar
  72. Walford RL, Liu RK, Gerbase-Delima M et al (1973) Longterm dietary restriction and immune function in mice: response to sheep red blood cells and to mitogenic agents. Mech Ageing Dev 2:447–454PubMedCrossRefGoogle Scholar
  73. Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215:1415–1418PubMedCrossRefGoogle Scholar
  74. Weindruch R, Gottesman SR, Walford RL (1982) Modification of age-related immune decline in mice dietarily restricted from or after midadulthood. Proc Natl Acad Sci U S A 79:898–902PubMedCrossRefGoogle Scholar
  75. Weindruch R, Devens BH, Raff HV et al (1983) Influence of dietary restriction and aging on natural killer cell activity in mice. J Immunol 130:993–996PubMedGoogle Scholar
  76. Willett WC, Sacks F, Trichopoulou A et al (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61:1402S–1406SPubMedGoogle Scholar
  77. Yuan Y, Kadiyala CS, Ching TT et al (2012) Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. J Biol Chem 287:31414–31426PubMedCrossRefGoogle Scholar
  78. Zalewski PD, Forbes IJ, Giannakis C et al (1990) Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton. FEBS Lett 273:131–134PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giulia Accardi
    • 1
  • Carmela Rita Balistreri
    • 1
    Email author
  • Calogero Caruso
    • 1
  • Giuseppina Candore
    • 1
  1. 1.Department of Pathobiology and Medical and Forensic BiotechnologiesUniversity of Palermo90134Italy

Personalised recommendations