T Cells Seen from the Metabolic and Aging Perspective

  • Xavier Camous
  • Anis LarbiEmail author


Ageing is often associated with impaired immunity accompanied by a higher susceptibility to infections, cancers, autoimmune disorders, and inflammatory conditions such as metabolic syndrome. However, how the immune system ages, independently of chronological age, is still not fully understood. Immunological challenges through life may cause the immune system to change its composition and to adapt to changes of the other systems (CNS, endocrine, cardiovascular). The age-related changes at the T cell level are very striking. This chapter reviews how the functionality of the different populations is associated to different metabolic pathways. This chapter highlights the importance of understanding metabolic changes at the cellular level to better evaluate T cell senescence in humans.


West Nile Virus Lipid Raft Dwarf Mouse Thymic Involution Immune Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adkins B, Mueller C, Okada CY et al (1987) Early events in T-cell maturation. Annu Rev Immunol 5:325–365PubMedCrossRefGoogle Scholar
  2. Andersen MH, Schrama D, Thor Straten P et al (2006) Cytotoxic T cells. J Invest Dermatol 126(1):32–41PubMedCrossRefGoogle Scholar
  3. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20(4):250–256PubMedCrossRefGoogle Scholar
  4. Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2(6):401–409PubMedGoogle Scholar
  5. Barter PJ, Nicholls S, Rye KA et al (2004) Antiinflammatory properties of HDL. Circ Res 95(8):764–772PubMedCrossRefGoogle Scholar
  6. Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225PubMedGoogle Scholar
  7. Belgardt BF, Mauer J, Bruning JC (2010) Novel roles for JNK1 in metabolism. Aging (Albany NY) 2(9):621–626Google Scholar
  8. Bird L (2009) T-cell development: thymocytes run the ‘gauntlet’. Nat Rev Immunol 9(1):2–2CrossRefGoogle Scholar
  9. Bots M, Medema JP (2006) Granzymes at a glance. J Cell Sci 119(Pt 24):5011–5014PubMedCrossRefGoogle Scholar
  10. Boucher N, Dufeu-Duchesne T, Vicaut E et al (1998) CD28 expression in T cell aging and human longevity. Exp Gerontol 33(3):267–282PubMedCrossRefGoogle Scholar
  11. Bradley LM, Haynes L, Swain SL (2005) IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol 26(3):172–176PubMedCrossRefGoogle Scholar
  12. Buttgereit F, Burmester GR, Brand MD (2000) Bioenergetics of immune functions: fundamental and therapeutic aspects. Immunol Today 21(4):192–199PubMedCrossRefGoogle Scholar
  13. Castle S, Uyemura K, Wong W et al (1997) Evidence of enhanced type 2 immune response and impaired upregulation of a type 1 response in frail elderly nursing home residents. Mech Ageing Dev 94(1–3):7–16PubMedCrossRefGoogle Scholar
  14. Cenci S, Weitzmann MN, Roggia C et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106(10):1229–1237PubMedCrossRefGoogle Scholar
  15. Chakravarti B, Abraham GN (1999) Aging and T-cell-mediated immunity. Mech Ageing Dev 108(3):183–206PubMedCrossRefGoogle Scholar
  16. Chambers SM, Shaw CA, Gatza C et al (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201PubMedCrossRefGoogle Scholar
  17. Cong LN, Chen H, Li Y et al (1997) Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11(13):1881–1890PubMedCrossRefGoogle Scholar
  18. Cvejic S, Zhu Z, Felice SJ et al (2004) The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila. Nat Cell Biol 6(6):540–546PubMedCrossRefGoogle Scholar
  19. de Grey AD (2003) The foreseeability of real anti-aging medicine: focusing the debate. Exp Gerontol 38(9):927–934PubMedCrossRefGoogle Scholar
  20. Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844PubMedCrossRefGoogle Scholar
  21. Dempsey PW, Vaidya SA, Cheng G (2003) The art of war: innate and adaptive immune responses. Cell Mol Life Sci 60(12):2604–2621PubMedCrossRefGoogle Scholar
  22. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8(5):337–348PubMedCrossRefGoogle Scholar
  23. Edney EB, Gill RW (1968) Evolution of senescence and specific longevity. Nature 220(5164):281–282PubMedCrossRefGoogle Scholar
  24. Ely KH, Ahmed M, Kohlmeier JE et al (2007) Antigen-specific CD8+ T cell clonal expansions develop from memory T cell pools established by acute respiratory virus infections. J Immunol 179(6):3535–3542PubMedGoogle Scholar
  25. Fink TM, Zimmer M, Weitz S et al (1992) Human perforin (PRF1) maps to 10q22, a region that is syntenic with mouse chromosome 10. Genomics 13(4):1300–1302PubMedCrossRefGoogle Scholar
  26. Frauwirth KA, Thompson CB (2004) Regulation of T lymphocyte metabolism. J Immunol 172(8):4661–4665PubMedGoogle Scholar
  27. Frauwirth KA, Riley JL, Harris MH et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777PubMedCrossRefGoogle Scholar
  28. Fulop T Jr (1994) Signal transduction changes in granulocytes and lymphocytes with ageing. Immunol Lett 40(3):259–268PubMedCrossRefGoogle Scholar
  29. Geginat J, Lanzavecchia A, Sallusto F (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101(11):4260–4266PubMedCrossRefGoogle Scholar
  30. Gerriets VA, Rathmell JC (2012) Metabolic pathways in T cell fate and function. Trends Immunol 33(4):168–173PubMedCrossRefGoogle Scholar
  31. Gilchrest BA, Murphy GF, Soter NA (1982) Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol 79(2):85–88PubMedCrossRefGoogle Scholar
  32. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128PubMedCrossRefGoogle Scholar
  33. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132PubMedCrossRefGoogle Scholar
  34. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  35. Hirsch JG (1959) Immunity to infectious diseases: review of some concepts of Metchnikoff. Bacteriol Rev 23(2):48–60PubMedGoogle Scholar
  36. Holtappels R, Pahl-Seibert MF, Thomas D et al (2000) Enrichment of immediate-early 1 (m123/pp 89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74(24):11495–11503PubMedCrossRefGoogle Scholar
  37. Hubbard VM, Valdor R, Patel B et al (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185(12):7349–7357PubMedCrossRefGoogle Scholar
  38. Hume DA, Radik JL, Ferber E et al (1978) Aerobic glycolysis and lymphocyte transformation. Biochem J 174(3):703–709PubMedGoogle Scholar
  39. Incardona JP, Eaton S (2000) Cholesterol in signal transduction. Curr Opin Cell Biol 12(2):193–203PubMedCrossRefGoogle Scholar
  40. Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147(2):447–461PubMedCrossRefGoogle Scholar
  41. Janes PW, Ley SC, Magee AI et al (2000) The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12(1):23–34PubMedCrossRefGoogle Scholar
  42. Jin ZX, Huang CR, Dong L et al (2008) Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells. Int Immunol 20(11):1427–1437PubMedCrossRefGoogle Scholar
  43. Kaeberlein M, Hu D, Kerr EO et al (2005) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1(5):e69PubMedCrossRefGoogle Scholar
  44. Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3(5):e84PubMedCrossRefGoogle Scholar
  45. Karrer U, Sierro S, Wagner M et al (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170(4):2022–2029PubMedGoogle Scholar
  46. Klotz L, Burgdorf S, Dani I et al (2009) The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206(10):2079–2089PubMedCrossRefGoogle Scholar
  47. Koch U, Radtke F (2011) Mechanisms of T cell development and transformation. Annu Rev Cell Dev Biol 27:539–562PubMedCrossRefGoogle Scholar
  48. Laird DJ, De Tomaso AW, Cooper MD et al (2000) 50 million years of chordate evolution: seeking the origins of adaptive immunity. Proc Natl Acad Sci U S A 97(13):6924–6926PubMedCrossRefGoogle Scholar
  49. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272(5264):1010–1013PubMedCrossRefGoogle Scholar
  50. Lang A, Nikolich-Zugich J (2005) Development and migration of protective CD8+ T cells into the nervous system following ocular herpes simplex virus-1 infection. J Immunol 174(5):2919–2925PubMedGoogle Scholar
  51. Lang A, Brien JD, Messaoudi I et al (2008) Age-related dysregulation of CD8+ T cell memory specific for a persistent virus is independent of viral replication. J Immunol 180(7):4848–4857PubMedGoogle Scholar
  52. Lapasset L, Milhavet O, Prieur A et al (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25(21):2248–2253PubMedCrossRefGoogle Scholar
  53. Larbi A, Grenier A, Frisch F et al (2005) Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T cell activation in humans. Am J Clin Nutr 82(5):949–956PubMedGoogle Scholar
  54. Larbi A, Dupuis G, Khalil A et al (2006) Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 18(7):1017–1030PubMedCrossRefGoogle Scholar
  55. Lewis KN, Mele J, Hornsby PJ et al (2012) Stress resistance in the naked mole-rat: the bare essentials - a mini-review. Gerontology 58(5):453–462PubMedCrossRefGoogle Scholar
  56. Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant Methuselah. Science 282(5390):943–946PubMedCrossRefGoogle Scholar
  57. Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2):237–248PubMedCrossRefGoogle Scholar
  58. Majithia V, Geraci SA (2007) Rheumatoid arthritis: diagnosis and management. Am J Med 120(11):936–939PubMedCrossRefGoogle Scholar
  59. Malamut G, El Machhour R, Montcuquet N et al (2010) IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 120(6):2131–2143PubMedCrossRefGoogle Scholar
  60. Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9(6):641–649PubMedCrossRefGoogle Scholar
  61. Marmor MD, Julius M (2001) Role for lipid rafts in regulating interleukin-2 receptor signaling. Blood 98(5):1489–1497PubMedCrossRefGoogle Scholar
  62. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774PubMedCrossRefGoogle Scholar
  63. Michalek RD, Gerriets VA, Nichols AG et al (2011) Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci U S A 108(45):18348–18353PubMedCrossRefGoogle Scholar
  64. Miller RA (1996) The aging immune system: primer and prospectus. Science 273(5271):70–74PubMedCrossRefGoogle Scholar
  65. Mirosavljevic D, Quinn JM, Elliott J et al (2003) T-cells mediate an inhibitory effect of interleukin-4 on osteoclastogenesis. J Bone Miner Res 18(6):984–993PubMedCrossRefGoogle Scholar
  66. Nakai D, Shimizu T, Nojiri H et al (2004) coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q. Aging Cell 3(5):273–281PubMedCrossRefGoogle Scholar
  67. Neretti N, Wang PY, Brodsky AS et al (2009) Long-lived Indy induces reduced mitochondrial reactive oxygen species production and oxidative damage. Proc Natl Acad Sci U S A 106(7):2277–2282PubMedCrossRefGoogle Scholar
  68. Pahlavani MA, Harris MD, Richardson A (1998) Activation of p21ras/MAPK signal transduction molecules decreases with age in mitogen-stimulated T cells from rats. Cell Immunol 185(1):39–48PubMedCrossRefGoogle Scholar
  69. Palmer C, Hampartzoumian T, Lloyd A et al (2008) A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection. Hepatology 48(2):374–384PubMedCrossRefGoogle Scholar
  70. Parry RV, Reif K, Smith G et al (1997) Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J Immunol 27(10):2495–2501PubMedCrossRefGoogle Scholar
  71. Pearce EL (2010) Metabolism in T cell activation and differentiation. Curr Opin Immunol 22(3):314–320PubMedCrossRefGoogle Scholar
  72. Pearce EL, Walsh MC, Cejas PJ et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103–107PubMedCrossRefGoogle Scholar
  73. Plunkett FJ, Franzese O, Finney HM et al (2007) The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178(12):7710–7719PubMedGoogle Scholar
  74. Pua HH, Guo J, Komatsu M et al (2009) Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 182(7):4046–4055PubMedCrossRefGoogle Scholar
  75. Sagone AL Jr, LoBuglio AF, Balcerzak SP (1974) Alterations in hexose monophosphate shunt during lymphoblastic transformation. Cell Immunol 14(3):443–452PubMedCrossRefGoogle Scholar
  76. Sakaguchi S, Ono M, Setoguchi R et al (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27PubMedCrossRefGoogle Scholar
  77. Sallusto F, Langenkamp A, Geginat J et al (2000) Functional subsets of memory T cells identified by CCR7 expression. Curr Top Microbiol Immunol 251:167–171PubMedGoogle Scholar
  78. Santana MA, Esquivel-Guadarrama F (2006) Cell biology of T cell activation and differentiation. Int Rev Cytol 250:217–274PubMedGoogle Scholar
  79. Sato K, Suematsu A, Okamoto K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203(12):2673–2682PubMedCrossRefGoogle Scholar
  80. Schulz TJ, Zarse K, Voigt A et al (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293PubMedCrossRefGoogle Scholar
  81. Schwarz BA, Bhandoola A (2006) Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev 209:47–57PubMedCrossRefGoogle Scholar
  82. Silvius JR (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta 1610(2):174–183PubMedCrossRefGoogle Scholar
  83. Smelick C, Ahmed S (2005) Achieving immortality in the C. elegans germline. Ageing Res Rev 4(1):67–82PubMedCrossRefGoogle Scholar
  84. Stenger S, Hanson DA, Teitelbaum R et al (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282(5386):121–125PubMedCrossRefGoogle Scholar
  85. Sun L, Ishida T, Yasuda T et al (2009) RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice. Cardiovasc Res 82(2):371–381PubMedCrossRefGoogle Scholar
  86. Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34(4):639–659PubMedCrossRefGoogle Scholar
  87. Thiers BH, Maize JC, Spicer SS et al (1984) The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol 82(3):223–226PubMedCrossRefGoogle Scholar
  88. Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322(6082):831–834PubMedCrossRefGoogle Scholar
  89. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMedGoogle Scholar
  90. Wherry EJ, Ha SJ, Kaech SM et al (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4):670–684PubMedCrossRefGoogle Scholar
  91. Whisler RL, Newhouse YG, Bagenstose SE (1996) Age-related reductions in the activation of mitogen-activated protein kinases p44mapk/ERK1 and p42mapk/ERK2 in human T cells stimulated via ligation of the T cell receptor complex. Cell Immunol 168(2):201–210PubMedCrossRefGoogle Scholar
  92. Whisler RL, Karanfilov CI, Newhouse YG et al (1998) Phosphorylation and coupling of zeta-chains to activated T-cell receptor (TCR)/CD3 complexes from peripheral blood T-cells of elderly humans. Mech Ageing Dev 105(1–2):115–135PubMedCrossRefGoogle Scholar
  93. Winer DA, Winer S, Shen L et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17(5):610–617PubMedCrossRefGoogle Scholar
  94. Wyzga N, Varghese S, Wikel S et al (2004) Effects of activated T cells on osteoclastogenesis depend on how they are activated. Bone 35(3):614–620PubMedCrossRefGoogle Scholar
  95. Zhou Y, Xu BC, Maheshwari HG et al (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94(24):13215–13220PubMedCrossRefGoogle Scholar
  96. Zs-Nagy I, Kitani K, Ohta M et al (1986) Age-dependent decrease of the lateral diffusion constant of proteins in the plasma membrane of hepatocytes as revealed by fluorescence recovery after photobleaching in tissue smears. Arch Gerontol Geriatr 5(2):131–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Singapore Immunology Network (SIgN)Agency for Science Technology and ResearchSingaporeSingapore

Personalised recommendations