Skip to main content

A Possibilistic Query Translation Approach for Cross-Language Information Retrieval

  • Conference paper
Intelligent Computing Theories and Technology (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7996))

Included in the following conference series:

Abstract

In this paper, we explore several statistical methods to find solutions to the problem of query translation ambiguity. Indeed, we propose and compare a new possibilistic approach for query translation derived from a probabilistic one, by applying a classical probability-possibility transformation of probability distributions, which introduces a certain tolerance in the selection of word translations. Finally, the best words are selected based on a similarity measure. The experiments are performed on CLEF-2003 French-English CLIR collection, which allowed us to test the effectiveness of the possibilistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bounhas, M., Mellouli, K., Prade, H., Serrurier, M.: Possibilistic classifiers for numerical data. Soft Computing 17, 733–751 (2013)

    Article  Google Scholar 

  2. Bounhas, M., Mellouli, K., Prade, H., Serrurier, M.: From Bayesian Classifiers to Possibilistic Classifiers for Numerical Data. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 112–125. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Church, K., Gale, W., Hanks, P., Hindle, D.: Using statistics in lexical analysis. Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon, pp. 115–164. Lawrence Erlbaum Associates, Hillsdale (1991)

    Google Scholar 

  4. Daille, B.: Approche mixte pour l’extraction de terminologie : statistique lexicale et filtres linguistiques. Ph.D. Thesis, University of Paris 7 (1994) (in French)

    Google Scholar 

  5. Mavaluru, D., Shriram, R., Banu, W.A.: Ensemble Approach for Cross Language Information Retrieval. In: Gelbukh, A. (ed.) CICLing 2012, Part II. LNCS, vol. 7182, pp. 274–285. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Dubois, D., Prade, H.: Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms. Fuzzy Sets and Systems 10, 15–20 (1985)

    Article  MathSciNet  Google Scholar 

  7. Dubois, D., Prade, H., Sandri, S.: On Possibility/Probability transformation. Fuzzy Logic: State of the Art, 103–112 (1993)

    Google Scholar 

  8. Dubois, D., Prade, H.: Possibility Theory: An Approach to computerized Processing of Uncertainty. Plenum Press, New York (1994)

    Google Scholar 

  9. Dunning, T.: Accurate Methods for the Statistics of Surprise and Coincidence. Computational Linguistics 19, 61–74 (1994)

    Google Scholar 

  10. Elayeb, B., Bounhas, I., Ben Khiroun, O., Evrard, F., Bellamine Ben Saoud, N.: Towards a Possibilistic Information Retrieval System Using Semantic Query Expansion. International Journal of Intelligent Information Technologies 7, 1–25 (2011)

    Article  Google Scholar 

  11. Elayeb, B., Evrard, F., Zaghdoud, M., Ben Ahmed, M.: Towards an Intelligent Possibilistic Web Information Retrieval using Multiagent System. The Interactive Technology and Smart Education, Special issue: New learning support systems 6, 40–59 (2009)

    Article  Google Scholar 

  12. Gao, J., Nie, J.Y., Xun, E., Zhang, J., Zhou, M., Huang, C.: Improving Query Translation for Cross-Language Information Retrieval using Statistical Models. In: Proceedings of SIGIR 2001, New Orleans, Louisiana, USA, pp. 9–12 (2001)

    Google Scholar 

  13. Iswarya, P., Radha, V.: Cross Language Text Retrieval: A Review. International Journal Of Engineering Research and Applications 2, 1036–1043 (2012)

    Google Scholar 

  14. Mallamma, V.R., Hanumanthappa, M.: Dictionary Based Word Translation in CLIR Using Cohesion Method. In: INDIACom-(2012) ISSN 0973-7529, ISBN 978-93-80544-03-8

    Google Scholar 

  15. Rijsbergen, V.: Information Retrieval. Butterworths, Londres (1979)

    Google Scholar 

  16. Smadja, F., Mckeown, K.R., Hatzivassiloglou, V.: Translating collocations for bilingual lexicons: a statistical approach. Computational Linguistics 22, 1–38 (1996)

    Google Scholar 

  17. Vitaly, K., Yannis, H.: Accurate Query Translation For Japanese-English Cross-Language Information Retrieval. In: International Conference on Pervasive and Embedded Computing and Communication Systems, pp. 214–219 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben Romdhane, W., Elayeb, B., Bounhas, I., Evrard, F., Ben Saoud, N.B. (2013). A Possibilistic Query Translation Approach for Cross-Language Information Retrieval. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39482-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39481-2

  • Online ISBN: 978-3-642-39482-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics