The Feature Extraction Method of EEG Signals Based on Degree Distribution of Complex Networks from Nonlinear Time Series

  • Fenglin Wang
  • Qingfang Meng
  • Weidong Zhou
  • Shanshan Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7995)


The nonlinear time series analysis method based on complex networks theory gives a novel perspective to understand the dynamics of the nonlinear time series. Considering the electroencephalogram (EEG) signals showing different nonlinear dynamics under different brain states, this study proposes an epileptic EEG analysis approach based on statistical properties of complex networks and applies the approach to epileptic EEGs automatic detection. Firstly, the complex network is constructed from the epileptic EEG signals and the degree distribution (DDF) of the resulting networks is calculated. Then the entropy of the degree distribution (NDDE) is used as a feature to classify the ictal EEGs and the interictal EEGs. The experiment results show that the NDDE of the ictal EEG is lower than interictal EEG’s and the classification accuracy, taking the NDDE as a classification feature, is up to 96.25%.


EEG Epilepsy Seizure detection Complex networks Degree distribution Shannon entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saab, M., Gotman, J.: A System to Detect the Onset of Epileptic Seizures in Scalp EEG. Clin. Neurophysiol. 116, 427–442 (2005)CrossRefGoogle Scholar
  2. 2.
    Khan, Y., Gotman, J.: Wavelet-Based Automatic Seizure Detection in Intracerebral Electroencephalogram. Clin. Neurophysiol. 114(5), 898–908 (2003)CrossRefGoogle Scholar
  3. 3.
    Haas, S., Frei, M., Osorio, I.: Strategies for Adapting Automated Seizure Detection Algorithms. Med. Eng. Phys. 29, 895–909 (2007)CrossRefGoogle Scholar
  4. 4.
    Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixedband Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection. IEEE Trans. Biomed. Eng. 54(9), 1545–1551 (2007)CrossRefGoogle Scholar
  5. 5.
    Srinivasan, V., Eswaran, C., Sriraam, N.: Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks. IEEE Trans. Biomed. Eng. 11(3), 288–295 (2007)CrossRefGoogle Scholar
  6. 6.
    Natarajan, K., Acharya, R., Alias, F., Tiboleng, T., Puthusserypady, S.K.: Nonlinear Analysis of EEG Signals At Different Mental States. BioMedi. Engin. OnLine 3, 1 (2004)CrossRefGoogle Scholar
  7. 7.
    Xie, Y., Xu, J.-X., Yang, H.-J., Hu, S.-J.: Phase-Space Reconstruction of ECoG Time Sequences and Extraction of Nonlinear Characteristic Quantities. Acta Phys. Sin. 51(2), 205–214 (2002)Google Scholar
  8. 8.
    Xie, Y., Xu, J.-X., Kang, Y.-M., Yang, H.-J., Hu, S.-J.: Nonlinear Noise Reduction for Electrocorticograms. Acta Phys. Sin. 52(5), 1121–1126 (2003)Google Scholar
  9. 9.
    Zhang, J., Small, M.: Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Phys. Rev. Lett. 96, 238701 (2006)CrossRefGoogle Scholar
  10. 10.
    Lucas, L., Bartolo, L., Fernando, B., Jordi, L., Juan, C.N.: From Time Series to Complex Networks: the Visibility Graph. PNAS 105(13), 4972–4975 (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Zhang, J., Sun, J.F., Luo, X., Zhang, K., Nakamura, T., Small, M.: Characterizing Pseudoperiodic Time Series through the Complex Network Approach. Physica D 237, 2856–2865 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Norbert, M., Jonathan, F.D., Zou, Y., Reik, V.D., Jurgen, K.: Complex Network Approach for Recurrence Analysis of Time Series. Physics Letters A 373, 4246–4254 (2009)Google Scholar
  13. 13.
    Gao, Z.K., Jin, N.D.: A Directed Weighted Complex Network for Characterizing Chaotic Dynamics from Time Series. Nonlinear Analysis: Real World Applications 13, 947–952 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fenglin Wang
    • 1
    • 2
  • Qingfang Meng
    • 1
    • 2
  • Weidong Zhou
    • 3
  • Shanshan Chen
    • 1
    • 2
  1. 1.School of Information Science and EngineeringUniversity of JinanJinanChina
  2. 2.Shandong Provincial Key laboratory of Network Based Intelligent ComputingJinanChina
  3. 3.School of Information Science and EngineeringShandong UniversityJinanChina

Personalised recommendations