Human Performance Assessment Study in Aviation Using Functional Near Infrared Spectroscopy

  • Joshua Harrison
  • Kurtulus Izzetoglu
  • Hasan Ayaz
  • Ben Willems
  • Sehchang Hah
  • Hyun Woo
  • Patricia A. Shewokis
  • Scott C. Bunce
  • Banu Onaral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)


Functional near infrared (fNIR) spectroscopy is a field-deployable optical neuroimaging technology that provides a measure of the prefrontal cortex’s cerebral hemodynamics in response to the completion of sensory, motor, or cognitive tasks. Technologies such as fNIR could provide additional performance metrics directly from brain-based measures to assess safety and performance of operators in high-risk fields. This paper reports a case study utilizing a continuous wave fNIR technology deployed in a real-time air traffic control (ATC) setting to evaluate the cognitive workload of certified professional controllers (CPCs) during the deployment of one of the Federal Aviation Administration’s (FAA’s) Next Generation (NextGen) technologies.


Near-infrared spectroscopy optical brain imaging fNIR human performance assessment air traffic control workload 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Endsley, M.R., Rodgers, M.D.: Distribution of attention, situation awareness, and workload in a passive air traffic control task: Implications for operational errors and automation. Air Traffic Control Quarterly 6(1), 21–44 (1998)Google Scholar
  2. 2.
    Ayaz, H., et al.: Optical brain monitoring for operator training and mental workload assessment. NeuroImage 59(1), 36–47 (2012)CrossRefGoogle Scholar
  3. 3.
    Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63(2), 921–935 (2012)CrossRefGoogle Scholar
  4. 4.
    Izzetoglu, M., et al.: Functional near-infrared neuroimaging. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 153–159 (2005)CrossRefGoogle Scholar
  5. 5.
    Fairclough, S.H., Venables, L., Tattersall, A.: The influence of task demand and learning on the psychophysiological response. Int. J. Psychophysiol. 56(2), 171–184 (2005)CrossRefGoogle Scholar
  6. 6.
    Fox, P.T., et al.: Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864), 462–464 (1988)CrossRefGoogle Scholar
  7. 7.
    Jobsis, F.F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)CrossRefGoogle Scholar
  8. 8.
    Bunce, S., et al.: Functional Near Infrared Spectroscopy: An Emerging Neuroimaging Modality. IEEE Engineering in Medicine and Biology Magazine, Special issue on Clinical Neuroengineering 25(4), 54–62 (2006)CrossRefGoogle Scholar
  9. 9.
    Chance, B., et al.: Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. U S A 90(8), 3770–3774 (1993)CrossRefGoogle Scholar
  10. 10.
    Izzetoglu, K., et al.: Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks (2004)Google Scholar
  11. 11.
    Ayaz, H., Cakir, M.P., Izzetoglu, K., Curtin, A., Shewokis, P.A., Bunce, S.C., Onaral, B.: Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging. In: IEEE Aerospace Conf., pp. 1–11 (2012)Google Scholar
  12. 12.
    Ayaz, H., Bunce, S., Shewokis, P., Izzetoglu, K., Willems, B., Onaral, B.: Using Brain Activity to Predict Task Performance and Operator Efficiency. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 147–155. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Bunce, S.C., Izzetoglu, K., Ayaz, H., Shewokis, P., Izzetoglu, M., Pourrezaei, K., Onaral, B.: Implementation of fNIRS for monitoring levels of expertise and mental workload. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2011. LNCS, vol. 6780, pp. 13–22. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Ayaz, H., Shewokis, P.A., İzzetoğlu, M., Çakır, M.P., Onaral, B.: Tangram solved? Prefrontal cortex activation analysis during geometric problem solving. In: 34th Annual International IEEE EMBS Conf. IEEE, pp. 4724–4727 (2012)Google Scholar
  15. 15.
    Izzetoglu, K., Ayaz, H., Menda, J., Izzetoglu, M., Merzagora, A., Shewokis, P.A., Pourrezaei, K., Onaral, B.: Applications of Functional Near Infrared Imaging: Case Study on UAV Ground Controller. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2011. LNCS, vol. 6780, pp. 608–617. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Ayaz, H., Izzetoglu, K., Cakir, M.P., Curtin, A., Harrison, J., Izzetoglu, M., Shewokis, P.A., Onaral, B.: Functional Brain Activity Monitoring during Unmanned Aerial Vehicle Coordination. In: 20th IEEE Signal Processing and Communications Applications Conf., Fethiye, Mugla, Turkiye, pp. 1–4 (2012)Google Scholar
  17. 17.
    Cope, M., et al.: Methods of quantitating cerebral near infrared spectroscopy data. Adv. Exp. Med. Biol. 222, 183–189 (1988)CrossRefGoogle Scholar
  18. 18.
    Cope, M.: The application of near infrared spectroscopy to non-invasive monitoring of cerebral oxygenation in the newborn infant, in Department of Medical Physics and Bioengineering1991, University College LondonGoogle Scholar
  19. 19.
    Obrig, H., Villringer, A.: Beyond the visible–imaging the human brain with light. J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003)CrossRefGoogle Scholar
  20. 20.
    Chance, B., et al.: A novel method for fast imaging of brain function, non-invasively, with light. Opt. Express 2(10), 411–423 (1998)CrossRefGoogle Scholar
  21. 21.
    FAA, FAA Order 7210.3 Facility Operation and Administration, Federal Aviation Administration: Washington, DC (2007) Google Scholar
  22. 22.
    Hancock, P., Parasuraman, R.: Human factors and safety in the design of Intelligent Vehicle–Highway Systems (IVHS). Journal of Safety Research 23, 181–198 (2008)CrossRefGoogle Scholar
  23. 23.
    Hancock, P.A., Verwey, W.B.: Fatigue, workload and adaptive driver systems. Accid Anal Prev. 29(4), 495–506 (1997)CrossRefGoogle Scholar
  24. 24.
    Parasuraman, R., Christensen, J., Grafton, S.: Neuroergonomics: The brain in action and at work. NeuroImage 59(1), 1–3 (2012)CrossRefGoogle Scholar
  25. 25.
    Parasuraman, R., Wilson, G.F.: Putting the brain to work: neuroergonomics past, present, and future. Hum Factors 50(3), 468–474 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joshua Harrison
    • 1
  • Kurtulus Izzetoglu
    • 1
  • Hasan Ayaz
    • 1
  • Ben Willems
    • 2
  • Sehchang Hah
    • 2
  • Hyun Woo
    • 2
  • Patricia A. Shewokis
    • 1
    • 3
  • Scott C. Bunce
    • 4
  • Banu Onaral
    • 1
  1. 1.School of Biomedical Engineering, Science & Health SystemsDrexel UniversityUSA
  2. 2.Atlantic City International Airport: Federal Aviation AdministrationW.J. Hughes Technical CenterUSA
  3. 3.Nutrition Sciences Department, College of Nursing and Health ProfessionsDrexel UniversityUSA
  4. 4.Penn State Hershey Medical Center and Penn State College of MedicineUSA

Personalised recommendations