Advertisement

Brain Biomarkers of Neural Efficiency during Cognitive-Motor Performance: Performing under Pressure

  • Michelle E. Costanzo
  • Bradley D. Hatfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)

Abstract

The concept of neural efficiency provides a powerful framework to assess the underlying mechanisms of brain dynamics during cognitive-motor performance. Electroencephalography (EEG) studies have revealed that as cognitive-motor performance improves non-essential brain processes are progressively disengaged resulting in brain dynamics leading to a state of neural efficiency. Multiple factors such as practice, genetics, mental stress, physical fitness and social interaction (team dynamics) can influence such cortical refinements positively or negatively and translate into an enhanced or deteriorated quality of performance. This paper provides a report of brain activity, assessed via fMRI, in a group of athletes who perform well under conditions of mental stress. Better understanding of brain states associated with such groups can enhance the ability to detect and classify adaptive mental states and increase the possibility of employing field-friendly brain monitoring tools such as EEG in ecologically valid situations for assessment of cognitive-motor performance in challenging real-world settings.

Keywords

Neural efficiency expertise fMRI emotion regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hatfield, B.D., Kerick, S.E.: The Psychology of Superior Sport Performance: A Cognitive and Affective Neuroscience Perspective. In: Tenenbaum, G., Eklund, R.C. (eds.) Handbook of Sport Psychology, pp. 84–109. John Wiley & Sons, Inc. (2007)Google Scholar
  2. 2.
    Del Percio, C., Rossini, P.M., Marzano, N., Iacoboni, M., Infarinato, F., Aschieri, P., Lino, A., Fiore, A., Toran, G., Babiloni, C., Eusebi, F.: Is there a “neural efficiency” in athletes? A high-resolution EEG study. Neuroimage 42, 1544–1553 (2008)CrossRefGoogle Scholar
  3. 3.
    Haufler, A.J., Spalding, T.W., Santa Maria, D.L., Hatfield, B.D.: Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biol. Psychol. 53, 131–160 (2000)CrossRefGoogle Scholar
  4. 4.
    Beilock, S.L.: Choke: What the Secrets of the Brain Reveal about Getting it Right When You Have. Free Press, New York (2010)Google Scholar
  5. 5.
    Beilock, S.L., Carr, T.H.: On the fragility of skilled performance: what governs choking under pressure? J. Exp. Psychol. Gen. 130, 701–725 (2001)CrossRefGoogle Scholar
  6. 6.
    Hancock, P.A., Szalma, J.L.: Performance Under Stress. Ashgate Publishing, Burlington (2008)Google Scholar
  7. 7.
    Haines, D.E.: Fundamental Neuroscience for Basic and Clinical Applications. Churchill Livingstone Elsevier, Philadelphia (2006)Google Scholar
  8. 8.
    Feder, A., Nestler, E.J., Charney, D.S.: Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci. 10, 446–457 (2009)CrossRefGoogle Scholar
  9. 9.
    Goldin, P.R., McRae, K., Ramel, W., Gross, J.J.: The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiatry. 63, 577–586 (2008)CrossRefGoogle Scholar
  10. 10.
    Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A., Ochsner, K.N.: Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008)CrossRefGoogle Scholar
  11. 11.
    Staal, M.A.: Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework. National Technical Information Service, N.C.f.A. Information (2004) Google Scholar
  12. 12.
    Andre, A.: The value of workload in the design and analysis of consumer products. In: Hancock, P.A., Desmond, P.A. (eds.) Stress, Workload, and Fatigue, pp. 373–382. L. Erlbaum, Mahwah (2001)Google Scholar
  13. 13.
    Tepas, D.I., Price, J.M.: What is stress and what is fatigue? In: Hancock, P.A., Desmond, P.A. (eds.) Stress, Workload, and Fatigue. L. Erlbaum, Mahwah (2001)Google Scholar
  14. 14.
    Van Galen, G.P., Van Huygevoort, M.: Error, stress and the role of neuromotor noise in space oriented behaviour. Biol. Psychol. 51, 151–171 (2000)CrossRefGoogle Scholar
  15. 15.
    Dishman, R.K.: Brain monoamines, exercise, and behavioral stress: animal models. Med. Sci. Sports Exerc. 29, 63–74 (1997)Google Scholar
  16. 16.
    Vialou, V., Robison, A.J., Laplant, Q.C., Covington, H.E., Dietz III, D.M., Ohnishi, Y.N., Mouzon, E., Rush, A.J., Watts III, E.L., Wallace, D.L., Iñiguez, S.D., Ohnishi, Y.H., Steiner, M.A., Warren, B.L., Krishnan, V., Bolaños, C.A., Neve, R.L., Ghose, S., Berton, O., Tamminga, C.A., Nestler, E.J.: DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat. Neurosci. 13, 745–752 (2010)CrossRefGoogle Scholar
  17. 17.
    Canli, T., Ferri, J., Duman, E.A.: Genetics of emotion regulation. Neuroscience 164, 43–54 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michelle E. Costanzo
    • 1
    • 2
  • Bradley D. Hatfield
    • 1
    • 2
  1. 1.Department of Kinesiology, Cognitive Motor Neuroscience LaboratoryUniversity of MarylandCollege ParkUSA
  2. 2.Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkUSA

Personalised recommendations