Advertisement

A Few Snapshots from the Work of Mikhail Gromov

  • D. Burago
  • Y. Eliashberg
  • M. Bestvina
  • F. Forstnerič
  • L. Guth
  • A. Nabutovsky
  • A. Phillips
  • J. Roe
  • A. Vershik

Abstract

This collection is the result of a collaborative work of a number of mathematicians: M. Bestvina, D. Burago, Y. Eliashberg, F. Forstnerič, L. Guth, A. Nabutovsky, A. Phillips, J. Roe and A. Vershik, coordinated and edited by D. Burago and Y. Eliashberg. Each contribution is however a single-authored paper. The papers are not unified by a common style or approach, they are indeed just snap-shots reflecting individual perception of their authors.

Supplementary material

The Abel Lecture by Mikhail Gromov, the Abel Laureate 2009 (MP4 324 MB)

References

  1. [1]
    Abouzaid, M.: On the wrapped Fukaya category and based loops. J. Symplectic Geom. 10(1), 27–79 (2012) MATHMathSciNetGoogle Scholar
  2. [2]
    Agol, I., Groves, D., Manning, J.: The virtual Haken conjecture. arXiv:1204.2810
  3. [3]
    Almgren, F.J.: The Theory of Varifolds—A Variational Calculus in the Large for the k-Dimensional Area Integrated. Mimeographed Notes (1965) Google Scholar
  4. [4]
    Arnold, V.I.: Sur une propriété topologique des applications globalement canoniques de la méchanique classique. C. R. Acad. Paris 261, 3719–3722 (1965) Google Scholar
  5. [5]
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators I. Ann. Math. 87, 484–530 (1968) MATHMathSciNetGoogle Scholar
  6. [6]
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators III. Ann. Math. 87, 546–604 (1968) MATHMathSciNetGoogle Scholar
  7. [7]
    Babenko, I.K.: Asymptotic invariants of smooth manifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 56(4), 707–751 (1992) Google Scholar
  8. [8]
    Balacheff, F., Croke, C., Katz, M.G.: A Zoll counterexample to a geodesic length conjecture. Geom. Funct. Anal. 19(1), 1–10 (2009) MATHMathSciNetGoogle Scholar
  9. [9]
    Balacheff, F., Sabourau, S.: Diastolic and isoperimetric inequalities on surfaces. Ann. Sci. Éc. Norm. Supér. (4) 43(4), 579–605 (2010) MATHMathSciNetGoogle Scholar
  10. [10]
    Bangert, V.: Closed geodesics on complete surfaces. Math. Ann. 251(1), 83–96 (1980) MATHMathSciNetGoogle Scholar
  11. [11]
    Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2–3), 141–152 (1982) MATHMathSciNetGoogle Scholar
  12. [12]
    Bennequin, D.: Entrelacements et équations de Pfaff. In: Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982). Astérisque, vol. 107, pp. 87–161. Soc. Math., Paris (1983) Google Scholar
  13. [13]
    Berger, M.: Encounter with a geometer, I, II. Not. Am. Math. Soc. 47(2, 3), 183–194, 326–340 (2000) MATHGoogle Scholar
  14. [14]
    Biran, P.: A stability property of symplectic packing. Invent. Math. 136(1), 123–155 (1999) MATHMathSciNetGoogle Scholar
  15. [15]
    Birget, J.-C., Ol’shanskii, A.Yu., Rips, E., Sapir, M.V.: Isoperimetric functions of groups and computational complexity of the word problem. Ann. of Math. (2) 156(2), 467–518 (2002) MATHMathSciNetGoogle Scholar
  16. [16]
    Birkhoff, G.D.: Proof of Poincaré’s geometric theorem. Trans. Am. Math. Soc. 14(1), 14–22 (1913) MATHMathSciNetGoogle Scholar
  17. [17]
    Borisov, Ju.F.: C 1,α-isometric immersions of Riemannian spaces. Dokl. Akad. Nauk SSSR 163, 11–13 (1965) MathSciNetGoogle Scholar
  18. [18]
    Borisov, Yu.F.: Irregular surfaces of the class C 1,β with an analytic metric. Sib. Mat. Zh. 45(1), 25–61 (2004) MATHGoogle Scholar
  19. [19]
    Borrelli, V., Jabrane, S., Lazarus, F., Thibert, F.: Flat tori in three-dimensional space and convex integration. Proc. Natl. Acad. Sci. USA 109, 7218–7223 (2012) MATHMathSciNetGoogle Scholar
  20. [20]
    Bowen, L.P.: A measure-conjugacy invariant for free group actions. Ann. of Math. (2) 171(2), 1387–1400 (2010) MATHMathSciNetGoogle Scholar
  21. [21]
    Brady, N., Bridson, M.R.: There is only one gap in the isoperimetric spectrum. Geom. Funct. Anal. 10(5), 1053–1070 (2000) MATHMathSciNetGoogle Scholar
  22. [22]
    Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999) MATHGoogle Scholar
  23. [23]
    Buhovsky, L., Ostrover, Y.: On the uniqueness of Hofer’s geometry. Geom. Funct. Anal. 21(6), 1296–1330 (2011) MATHMathSciNetGoogle Scholar
  24. [24]
    Burago, D., Ivanov, S.: On asymptotic isoperimetric constant of tori. Geom. Funct. Anal. 8(5), 783–787 (1998) MATHMathSciNetGoogle Scholar
  25. [25]
    Burago, D., Ivanov, S.: On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume. Ann. of Math. (2) 156(3), 891–914 (2002) MATHMathSciNetGoogle Scholar
  26. [26]
    Burago, D., Ivanov, S.: Area minimizers and boundary rigidity of almost hyperbolic metrics. arXiv:1011.1570
  27. [27]
    Burago, D., Ivanov, S.: Minimality of planes in normed spaces. arXiv:1204.1543
  28. [28]
    Burago, D., Ivanov, S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Ann. of Math. (2) 171(2), 1183–1211 (2010) MATHMathSciNetGoogle Scholar
  29. [29]
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics. Amer. Math. Soc., Providence (2001) MATHGoogle Scholar
  30. [30]
    Cadek, M., Krcal, M., Matousek, J., Sergeraert, F., Vokrinek, L., Wagner, U.: Computing all maps into a sphere. arXiv:1105.6257
  31. [31]
    Cannon, J.W.: The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedic. 16(2), 123–148 (1984) MATHMathSciNetGoogle Scholar
  32. [32]
    Chaperon, M.: Une idée du type “géodésique brisée” pour les systémes hamiltoniens. C. R. Acad. Sci. 298(6), 293–296 (1984) MATHMathSciNetGoogle Scholar
  33. [33]
    Cheeger, J., Gromov, M.: L 2-cohomology and group cohomology. Topology 25(2), 189–215 (1986) MATHMathSciNetGoogle Scholar
  34. [34]
    Conley, C.C., Zehnder, E.: The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnol’d. Invent. Math. 73(1), 33–49 (1983) MATHMathSciNetGoogle Scholar
  35. [35]
    Conti, S., De Lellis, C., Székelyhidi, L. Jr.: h-principle and rigidity for c 1-isometric embeddings. In: The Abel Symposium 2010, pp. 8–116. Amer. Math. Soc., Providence (2012) Google Scholar
  36. [36]
    Croke, C.B.: Area and the length of the shortest closed geodesic. J. Differ. Geom. 27(1), 1–21 (1988) MATHMathSciNetGoogle Scholar
  37. [37]
    Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. arXiv:1111.7048
  38. [38]
    De Lellis, C., Székelyhidi, L. Jr.: The Euler equations as a differential inclusion. Ann. of Math. (2) 170(3), 1417–1436 (2009) MATHMathSciNetGoogle Scholar
  39. [39]
    De Lellis, C., Székelyhidi, L. Jr.: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. 49(3), 347–375 (2012) MATHGoogle Scholar
  40. [40]
    Delzant, T., Gromov, M.: Courbure mésoscopique et théorie de la toute petite simplification. J. Topol. 1(4), 804–836 (2008) MATHMathSciNetGoogle Scholar
  41. [41]
    Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Differ. Geom. 18(2), 279–315 (1983) MATHMathSciNetGoogle Scholar
  42. [42]
    Donaldson, S.K.: Symplectic submanifolds and almost-complex geometry. J. Differ. Geom. 44(4), 666–705 (1996) MATHMathSciNetGoogle Scholar
  43. [43]
    Ekholm, T., Eliashberg, Y., Murphy, E., Smith, I.: Constructing Lagrangian immersions with few double points. Geom. and Funct. Anal. doi: 10.1007/s00039-013-0243-6
  44. [44]
    Ekholm, T., Smith, I.: Exact Lagrangian immersions with a single double point. arXiv:1111.5932
  45. [45]
    Eliashberg, Ja.M.: Surgery of singularities of smooth mappings. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 1321–1347 (1972) MathSciNetGoogle Scholar
  46. [46]
    Eliashberg, Ja.M.: Estimates on of the Number of Fixed Points of Area-Preserving Transformations of Surfaces (1979). VINITI, Syktyvkar University Google Scholar
  47. [47]
    Eliashberg, Ja.M.: Complex structures on a manifold with boundary. Funkc. Anal. Prilozh. 14(1), 89–90 (1980) MathSciNetGoogle Scholar
  48. [48]
    Eliashberg, Ja.M.: The wave fronts structure theorem and its applications to symplectic topology. Funkc. Anal. Prilozh. 21(3), 65–72 (1987) MathSciNetGoogle Scholar
  49. [49]
    Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. In: Special Volume–GAFA2000, pp. 560–673. Birkhäuser, Basel (2000) Google Scholar
  50. [50]
    Eliashberg, Y., Gromov, M.: Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2+1. Ann. of Math. (2) 136(1), 123–135 (1992) MATHMathSciNetGoogle Scholar
  51. [51]
    Eliashberg, Y., Gromov, M.: Lagrangian intersection theory: finite-dimensional approach. In: Geometry of Differential Equations. American Mathematical Society Translations—Series 2, vol. 186, pp. 27–128. Amer. Math. Soc., Providence (1998) Google Scholar
  52. [52]
    Eliashberg, Y., Polterovich, L.: Unknottedness of Lagrangian surfaces in symplectic 4-manifolds. Int. Math. Res. Not. 11, 295–301 (1993) MathSciNetGoogle Scholar
  53. [53]
    Eliashberg, Y.M., Mishachev, N.M.: Holonomic approximation and Gromov’s h-principle. In: Essays on Geometry and Related Topics, Vols. 1, 2. Monogr. Enseign. Math., vol. 38, pp. 271–285. Enseignement Math, Geneva (2001) Google Scholar
  54. [54]
    Ferry, S., Weinberger, S.: Quantitative algebraic topology I: Lipschitz homotopy I, www.pnas.org/cgi/doi/10.1073/pnas.1208041110
  55. [55]
    Fet, A.I.: Variational problems on closed manifolds. Transl. Am. Math. Soc. 1953(90), 61 (1953) MathSciNetGoogle Scholar
  56. [56]
    Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28(3), 513–547 (1988) MATHMathSciNetGoogle Scholar
  57. [57]
    Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41(6), 775–813 (1988) MATHMathSciNetGoogle Scholar
  58. [58]
    Forster, O.: Plongements des variétés de Stein. Comment. Math. Helv. 45, 170–184 (1970) MATHMathSciNetGoogle Scholar
  59. [59]
    Forstnerič, F.: The Oka principle for sections of stratified fiber bundles. Pure Appl. Math. Q. 6(3), 843–874 (2010). Special Issue: In honor of Joseph J. Kohn. Part 1 MATHMathSciNetGoogle Scholar
  60. [60]
    Forstnerič, F., Lárusson, F.: Survey of Oka theory. N.Y. J. Math. 17A, 11–38 (2011) MATHGoogle Scholar
  61. [61]
    Forstnerič, F., Prezelj, J.: Oka’s principle for holomorphic fiber bundles with sprays. Math. Ann. 317(1), 117–154 (2000) MATHMathSciNetGoogle Scholar
  62. [62]
    Forstnerič, F., Prezelj, J.: Oka’s principle for holomorphic submersions with sprays. Math. Ann. 322(4), 633–666 (2002) MATHMathSciNetGoogle Scholar
  63. [63]
    Forstnerič, F.: Stein Manifolds and Holomorphic Mappings, 3. Folge. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 56. Springer, Berlin (2011) Google Scholar
  64. [64]
    Frankel, S., Katz, M.: The Morse landscape of a Riemannian disk. Ann. Inst. Fourier (Grenoble) 43(2), 503–507 (1993) MATHMathSciNetGoogle Scholar
  65. [65]
    Fukaya, K., Ono, K.: Arnold conjecture and Gromov–Witten invariant for general symplectic manifolds. In: The Arnoldfest, Toronto, ON, 1997. Fields Inst. Commun., vol. 24, pp. 173–190. Amer. Math. Soc., Providence (1999) Google Scholar
  66. [66]
    Ghomi, M.: Directed immersions of closed manifolds. Geom. Topol. 15(2), 699–705 (2011) MATHMathSciNetGoogle Scholar
  67. [67]
    Ghys, É., de la Harpe, P. (eds.): Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, vol. 83. Birkhäuser Boston (1990). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988 MATHGoogle Scholar
  68. [68]
    Ghys, É.: Groupes aléatoires (d’après Misha Gromov, …). Astérisque 294(viii), 173–204 (2004) MathSciNetGoogle Scholar
  69. [69]
    Gottlieb, D.H.: A certain subgroup of the fundamental group. Am. J. Math. 87, 840–856 (1965) MATHMathSciNetGoogle Scholar
  70. [70]
    Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263–273 (1958) MATHMathSciNetGoogle Scholar
  71. [71]
    Gray, J.W.: Some global properties of contact structures. Ann. of Math. (2) 69, 421–450 (1959) MATHMathSciNetGoogle Scholar
  72. [72]
    Gromov, M.: Hyperbolic manifolds, groups and actions. In: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, N.Y., 1978. Ann. of Math. Stud., vol. 97, pp. 183–213. Princeton Univ. Press, Princeton (1981) Google Scholar
  73. [73]
    Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985) MATHMathSciNetGoogle Scholar
  74. [74]
    Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1987) Google Scholar
  75. [75]
    Gromov, M.: Width and related invariants of Riemannian manifolds. Astérisque (163–164):6, 93–109, 282 (1989), 1988. On the geometry of differentiable manifolds (Rome, 1986). Google Scholar
  76. [76]
    Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2, 851–897 (1989) MATHMathSciNetGoogle Scholar
  77. [77]
    Gromov, M.: Asymptotic invariants for infinite groups. In: Niblo, G.A., Roller, M.A. (eds.) Geometric Group Theory. LMS Lecture Notes, vol. 182, pp. 1–295. Cambridge University Press, Cambridge (1993) Google Scholar
  78. [78]
    Gromov, M.: Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional Analysis on the Eve of the 21st Century, Vol. II, New Brunswick, NJ, 1993. Progr. Math., vol. 132, pp. 1–213. Birkhäuser, Boston (1996) Google Scholar
  79. [79]
    Gromov, M.: Spaces and questions. Geom. Funct. Anal. Part I, 118–161 (2000). Special Volume, GAFA 2000 (Tel Aviv, 1999) MathSciNetGoogle Scholar
  80. [80]
    Gromov, M.: CAT(κ)-spaces: construction and concentration. Zap. Nauč. Semin. POMI 280(7), 100–140 (2001). 299–300, Geom. Topol. MathSciNetGoogle Scholar
  81. [81]
    Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13(1), 178–215 (2003) MATHMathSciNetGoogle Scholar
  82. [82]
    Gromov, M.: Random walk in random groups. Geom. Funct. Anal. 13(1), 73–146 (2003) MATHMathSciNetGoogle Scholar
  83. [83]
    Gromov, M.: Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal. 20(2), 416–526 (2010) MATHMathSciNetGoogle Scholar
  84. [84]
    Gromov, M., Lawson, H.B.: The classification of simply-connected manifolds of positive scalar curvature. Ann. Math. 111, 423–434 (1980) MATHMathSciNetGoogle Scholar
  85. [85]
    Gromov, M., Lawson, H.B.: Spin and scalar curvature in the presence of a fundamental group. Ann. Math. 111, 209–230 (1980) MATHMathSciNetGoogle Scholar
  86. [86]
    Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator. Publ. Math. Inst Hautes Études Sci. 58, 83–196 (1983) MATHMathSciNetGoogle Scholar
  87. [87]
    Gromov, M.L.: Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 33, 707–734 (1969) MATHMathSciNetGoogle Scholar
  88. [88]
    Gromov, M.L.: Convex integration of differential relations. I. Izv. Akad. Nauk SSSR, Ser. Mat. 37, 329–343 (1973) MATHMathSciNetGoogle Scholar
  89. [89]
    Gromov, M.L., Eliashberg, Ja.M.: Construction of nonsingular isoperimetric films. Tr. Mat. Inst. Steklova 116, 18–33 (1971) and 235. Boundary value problems of mathematical physics, 7 Google Scholar
  90. [90]
    Gromov, M.L., Eliashberg, Ja.M.: Elimination of singularities of smooth mappings. Izv. Akad. Nauk SSSR, Ser. Mat. 35, 600–626 (1971) MATHMathSciNetGoogle Scholar
  91. [91]
    Gromov, M.L., Eliashberg, Ja.M.: Nonsingular mappings of Stein manifolds. Funct. Anal. Priložen. 5(2), 82–83 (1971) Google Scholar
  92. [92]
    Gromov, M.: Homotopical effects of dilatation. J. Differ. Geom. 13(3), 303–310 (1978) MATHMathSciNetGoogle Scholar
  93. [93]
    Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981) MATHMathSciNetGoogle Scholar
  94. [94]
    Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983) MATHMathSciNetGoogle Scholar
  95. [95]
    Gromov, M.: Infinite groups as geometric objects. In: Proceedings of the International Congress of Mathematicians, Vols. 1, 2, Warsaw, 1983, pp. 385–392. PWN, Warsaw (1984) Google Scholar
  96. [96]
    Gromov, M.: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9. Springer, Berlin (1986) MATHGoogle Scholar
  97. [97]
    Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian Geometry. Progr. Math., vol. 144, pp. 79–323. Birkhäuser, Basel (1996) Google Scholar
  98. [98]
    Gromov, M.: Systoles and intersystolic inequalities. In: Actes de la Table Ronde de Géométrie Différentielle, Luminy, 1992. Sémin. Congr., vol. 1, pp. 291–362. Soc. Math. France, Paris (1996) Google Scholar
  99. [99]
    Gromov, M.: Quantitative homotopy theory. In: Prospects in Mathematics, Princeton, NJ, 1996, pp. 45–49. Amer. Math. Soc., Providence (1999) Google Scholar
  100. [100]
    Gromov, M.: Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles. Geom. Funct. Anal. 19(3), 743–841 (2009) MATHMathSciNetGoogle Scholar
  101. [101]
    Gromov, M.:. In a search for a structure. Preprint http://www.ihes.fr/~gromov/topics/recent.html
  102. [102]
    Gromov, M.: Spaces and questions. Geom. Funct. Anal. Part I, 118–161 (2000). Special Volume, GAFA 2000 (Tel Aviv, 1999) MathSciNetGoogle Scholar
  103. [103]
    Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Modern Birkhäuser Classics. Birkhäuser, Boston (2007). English edition. Based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates MATHGoogle Scholar
  104. [104]
    Guth, L.: In preparation Google Scholar
  105. [105]
    Guth, L.: Contraction of areas vs. topology of maps. Preprint Google Scholar
  106. [106]
    Guth, L.: The width-volume inequality. Geom. Funct. Anal. 17(4), 1139–1179 (2007) MATHMathSciNetGoogle Scholar
  107. [107]
    Guth, L.: Symplectic embeddings of polydisks. Invent. Math. 172(3), 477–489 (2008) MATHMathSciNetGoogle Scholar
  108. [108]
    Guth, L.: Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18(6), 1917–1987 (2009) MATHMathSciNetGoogle Scholar
  109. [109]
    Guth, L.: Metaphors in systolic geometry. In: Proceedings of the International Congress of Mathematicians. Volume II, pp. 745–768. Hindustan Book Agency, New Delhi (2010) Google Scholar
  110. [110]
    Guth, L.: Volumes of balls in large Riemannian manifolds. Ann. of Math. (2) 173(1), 51–76 (2011) MATHMathSciNetGoogle Scholar
  111. [111]
    Hass, J., Morgan, F.: Geodesic nets on the 2-sphere. Proc. Am. Math. Soc. 12, 3843–3850 (1996) MathSciNetGoogle Scholar
  112. [112]
    Higson, N., Lafforgue, V., Skandalis, G.: Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal. 12(2), 330–354 (2002) MATHMathSciNetGoogle Scholar
  113. [113]
    Hirsch, M.W.: Immersions of manifolds. Trans. Am. Math. Soc. 93, 242–276 (1959) MATHGoogle Scholar
  114. [114]
    Hofer, H.: Lusternik–Schnirelman-theory for Lagrangian intersections. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5(5), 465–499 (1988) MATHMathSciNetGoogle Scholar
  115. [115]
    Hofer, H.: On the topological properties of symplectic maps. Proc. R. Soc. Edinb., Sect. A, Math. 115(1–2), 25–38 (1990) MATHMathSciNetGoogle Scholar
  116. [116]
    Hofer, H.: Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114(3), 515–563 (1993) MATHMathSciNetGoogle Scholar
  117. [117]
    Hutchings, M.: Recent progress on symplectic embedding problems in four dimensions. arXiv:1101.1069
  118. [118]
    Hutchings, M.: Embedded contact homology and its applications. In: Proceedings of the International Congress of Mathematicians. Volume II, pp. 1022–1041. Hindustan Book Agency, New Delhi (2010) Google Scholar
  119. [119]
    Ivanov, S.V., Ol’shanskiĭ, A.Yu.: Hyperbolic groups and their quotients of bounded exponents. Trans. Am. Math. Soc. 348(6), 2091–2138 (1996) MATHGoogle Scholar
  120. [120]
    Ivarsson, B., Kutzschebauch, F.: Holomorphic factorization of mappings into \(\mathrm {SL}_{n}(\mathbb{C})\). Ann. of Math. (2) 175(1), 45–69 (2012) MATHMathSciNetGoogle Scholar
  121. [121]
    Karshon, Y.: Invent. Math. 115(1), 431–434 (1994). Appendix to D. McDuff and L. Polterovich MATHMathSciNetGoogle Scholar
  122. [122]
    Katz, M.: The filling radius of two-point homogeneous spaces. J. Differ. Geom. 18(3), 505–511 (1983) MATHGoogle Scholar
  123. [123]
    Krcal, M., Matousek, J., Sergeraert, F.: Polynomial-time homology for simplicial Eilenberg-Maclane spaces. arXiv:1201.6222
  124. [124]
    Kuiper, N.H.: On C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 545–556 (1955), 683–689 MathSciNetGoogle Scholar
  125. [125]
    Lalonde, F., McDuff, D.: The geometry of symplectic energy. Ann. of Math. (2) 141(2), 349–371 (1995) MATHMathSciNetGoogle Scholar
  126. [126]
    Landweber, P.S.: Complex structures on open manifolds. Topology 13, 69–75 (1974) MATHMathSciNetGoogle Scholar
  127. [127]
    Lárusson, F.: Model structures and the Oka principle. J. Pure Appl. Algebra 192(1–3), 203–223 (2004) MATHMathSciNetGoogle Scholar
  128. [128]
    Latschev, J., McDuff, D., Schlenk, F.: The Gromov width of 4-dimensional tori. arXiv:1111.6566
  129. [129]
    Lawson, H.B. Jr.: Lectures on Minimal Submanifolds. Vol. I, 2nd edn. Mathematics Lecture Series, vol. 9. Publish or Perish, Wilmington (1980) MATHGoogle Scholar
  130. [130]
    Lichnerowicz, A.: Spineurs harmoniques. C. R. Math. Acad. Sci. 257, 7–9 (1963) MATHMathSciNetGoogle Scholar
  131. [131]
    Liokumovich, Y.: Spheres of small diameter with long sweep-outs. Proc. Amer. Math. Soc. 141(1), 309–312 (2013) MATHMathSciNetGoogle Scholar
  132. [132]
    Liokumovich, Y., Nabutovsky, A., Rotman, R.: Contracting the boundary of a Riemannian 2-disc. arXiv:1205.5474
  133. [133]
    McDuff, D.: The structure of rational and ruled symplectic 4-manifolds. J. Am. Math. Soc. 3(3), 679–712 (1990) MATHMathSciNetGoogle Scholar
  134. [134]
    McDuff, D.: Singularities and positivity of intersections of J-holomorphic curves. In: Holomorphic Curves in Symplectic Geometry. Progr. Math., vol. 117, pp. 191–215. Birkhäuser, Basel (1994). With an appendix by Gang Liu Google Scholar
  135. [135]
    McDuff, D., Polterovich, L.: Symplectic packings and algebraic geometry. Invent. Math. 115(3), 405–434 (1994). With an appendix by Yael Karshon MATHMathSciNetGoogle Scholar
  136. [136]
    Micallef, M.J., White, B.: The structure of branch points in minimal surfaces and in pseudoholomorphic curves. Ann. of Math. (2) 141(1), 35–85 (1995) MATHMathSciNetGoogle Scholar
  137. [137]
    Mishachev, N.M., Eliashberg, Ja.M.: Surgery of singularities of foliations. Funct. Anal. Priložen. 11(3), 43–53 (1977). 96 MATHGoogle Scholar
  138. [138]
    Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965) MATHGoogle Scholar
  139. [139]
    Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. (2) 157(3), 715–742 (2003) MATHMathSciNetGoogle Scholar
  140. [140]
    Nabutovsky, A.: Disconnectedness of sublevel sets of some Riemannian functionals. Geom. Funct. Anal. 6, 703–725 (1996) MATHMathSciNetGoogle Scholar
  141. [141]
    Nabutovsky, A., Rotman, R.: Lengths of geodesics and quantitative Morse theory on loop spaces. Submitted. http://www.math.toronto.edu/alex/morse09.pdf
  142. [142]
    Nabutovsky, A., Rotman, R.: The length of the shortest closed geodesic on a 2-dimensional sphere. Int. Math. Res. Not. 23, 1211–1222 (2002) MathSciNetGoogle Scholar
  143. [143]
    Nabutovsky, A., Rotman, R.: Volume, diameter and the minimal mass of a stationary 1-cycle. Geom. Funct. Anal. 14(4), 748–790 (2004) MATHMathSciNetGoogle Scholar
  144. [144]
    Nabutovsky, A., Rotman, R.: Curvature-free upper bounds for the smallest area of a minimal surface. Geom. Funct. Anal. 16(2), 453–475 (2006) MATHMathSciNetGoogle Scholar
  145. [145]
    Nabutovsky, A., Rotman, R.: Length of geodesics on a two-dimensional sphere. Am. J. Math. 131(2), 549–569 (2009) MathSciNetGoogle Scholar
  146. [146]
    Nabutovsky, A., Rotman, R.: Upper bounds on the length of a shortest closed geodesic and quantitative Hurewicz theorem. J. Eur. Math. Soc. 5(3), 203–244 (2003) MATHMathSciNetGoogle Scholar
  147. [147]
    Nabutovsky, A., Rotman, R.: Linear bounds for lengths of geodesic loops on Riemannian 2-spheres. J. Differ. Geom. 89(2), 217–232 (2011) MATHMathSciNetGoogle Scholar
  148. [148]
    Nash, J.: C 1 isometric imbeddings. Ann. of Math. (2) 60, 383–396 (1954) MATHMathSciNetGoogle Scholar
  149. [149]
    Oka, K.: Sur les fonctions des plusieurs variables. III: Deuxième problème de cousin. J. Sci. Hiroshima Univ. 9(1–3), 7–19 (1939) MATHMathSciNetGoogle Scholar
  150. [150]
    Ollivier, Y.: A January 2005 Invitation to Random Groups. Ensaios Matemáticos [Mathematical Surveys], vol. 10. Soc. Brasileira de Matemática, Rio de Janeiro (2005) MATHGoogle Scholar
  151. [151]
    Ollivier, Y.: On a small cancellation theorem of Gromov. Bull. Belg. Math. Soc. Simon Stevin 13(1), 75–89 (2006) MATHMathSciNetGoogle Scholar
  152. [152]
    Ol’shanskiĭ, A.Yu.: Periodic quotient groups of hyperbolic groups. Mat. Sb. 182(4), 543–567 (1991) Google Scholar
  153. [153]
    Ol’shanskiĭ, A.Yu.: Almost every group is hyperbolic. Int. J. Algebra Comput. 2(1), 1–17 (1992) Google Scholar
  154. [154]
    Ozsváth, P., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. of Math. (2) 159(3), 1159–1245 (2004) MATHMathSciNetGoogle Scholar
  155. [155]
    Papasoglu, P.: An algorithm detecting hyperbolicity. In: Geometric and Computational Perspectives on Infinite Groups, Minneapolis, MN and New Brunswick, NJ, 1994. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, pp. 193–200. Amer. Math. Soc., Providence (1996) Google Scholar
  156. [156]
    Pardon, J.: On the distortion of knots on embedded surfaces. Ann. of Math. (2) 174(1), 637–646 (2011) MATHMathSciNetGoogle Scholar
  157. [157]
    Pestov, L., Uhlmann, G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. of Math. (2) 161(2), 1093–1110 (2005) MATHMathSciNetGoogle Scholar
  158. [158]
    Petrunin, A.: Diameter of universal cover. http://mathoverflow.net/questions/8534/diameter-of-universal-cover
  159. [159]
    Phillips, A.: Submersions of open manifolds. Topology 6, 171–206 (1967) MATHMathSciNetGoogle Scholar
  160. [160]
    Pitts, J.T.: Existence and regularity of minimal surfaces on Riemannian manifolds. Bull. Am. Math. Soc. 82(3), 503–504 (1976) MATHMathSciNetGoogle Scholar
  161. [161]
    Pitts, J.T.: Regular minimal hypersurfaces exist on manifolds in dimensions up to six. In: Seminar on Minimal Submanifolds. Ann. of Math. Stud., vol. 103, pp. 199–205. Princeton Univ. Press, Princeton (1983) Google Scholar
  162. [162]
    Poenaru, V.: On regular homotopy in codimension 1. Ann. of Math. (2) 83, 257–265 (1966) MATHMathSciNetGoogle Scholar
  163. [163]
    Poincaré, H.: Sur une théorème de géométrie. Rend. Circ. Mat. Palermo 33, 375–507 (1912) Google Scholar
  164. [164]
    Rotman, R.: The length of a shortest closed geodesic and the area of a 2-dimensional sphere. Proc. Am. Math. Soc. 134(10), 3041–3047 (2006) (electronic) MATHMathSciNetGoogle Scholar
  165. [165]
    Rotman, R.: The length of a shortest geodesic net on a closed Riemannian manifold. Topology 46(4), 343–356 (2007) MATHMathSciNetGoogle Scholar
  166. [166]
    Rotman, R.: The length of a shortest geodesic loop at a point. J. Differ. Geom. 78(3), 497–519 (2008) MATHMathSciNetGoogle Scholar
  167. [167]
    Rotman, R.: Flowers on Riemannian manifolds. Math. Z. 269(1–2), 543–554 (2011) MATHMathSciNetGoogle Scholar
  168. [168]
    Sabourau, S.: Filling radius and short closed geodesics of the 2-sphere. Bull. Soc. Math. Fr. 132(1), 105–136 (2004) MATHMathSciNetGoogle Scholar
  169. [169]
    Sabourau, S.: Global and local volume bounds and the shortest geodesic loops. Commun. Anal. Geom. 12(5), 1039–1053 (2004) MATHMathSciNetGoogle Scholar
  170. [170]
    Sapir, M.V., Birget, J.-C., Rips, E.: Isoperimetric and isodiametric functions of groups. Ann. of Math. (2) 156(2), 345–466 (2002) MATHMathSciNetGoogle Scholar
  171. [171]
    Sauvaget, D.: Curiosités lagrangiennes en dimension 4. Ann. Inst. Fourier (Grenoble) 54(6), 1997–2020 (2005). 2004 MathSciNetGoogle Scholar
  172. [172]
    Schwartz, A.S.: Geodesic arcs on Riemann manifolds. Usp. Mat. Nauk 13(6 (84)):181–184 (1958) Google Scholar
  173. [173]
    Schwarz, M.: A quantum cup-length estimate for symplectic fixed points. Invent. Math. 133(2), 353–397 (1998) MATHMathSciNetGoogle Scholar
  174. [174]
    Smale, S.: The classification of immersions of spheres in Euclidean spaces. Ann. of Math. (2) 69, 327–344 (1959) MATHMathSciNetGoogle Scholar
  175. [175]
    Spring, D.: On the regularity of solutions in convex integration theory. Invent. Math. 104(1), 165–178 (1991) MATHMathSciNetGoogle Scholar
  176. [176]
    Spring, D.: Convex Integration Theory. Monographs in Mathematics, vol. 92. Birkhäuser, Basel (1998). Solutions to the h-principle in geometry and topology MATHGoogle Scholar
  177. [177]
    Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. Math. 136(3), 511–540 (1992). ArticleType: research-article/Full publication date: Nov., 1992 / Copyright © 1992 Annals of Mathematics MATHMathSciNetGoogle Scholar
  178. [178]
    Taubes, C.H.: SW⇒Gr: from the Seiberg–Witten equations to pseudo-holomorphic curves. J. Am. Math. Soc. 9(3), 845–918 (1996) MATHMathSciNetGoogle Scholar
  179. [179]
    Taubes, C.H.: Gr⟹SW: from pseudo-holomorphic curves to Seiberg–Witten solutions. J. Differ. Geom. 51(2), 203–334 (1999) MATHMathSciNetGoogle Scholar
  180. [180]
    Taubes, C.H.: The Seiberg–Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field. Geom. Topol. 13(3), 1337–1417 (2009) MATHMathSciNetGoogle Scholar
  181. [181]
    Taubes, C.H.: Embedded contact homology and Seiberg–Witten Floer cohomology I, II, III, IV, V. Geom. Topol. 14(5), 2497–3000 (2010) MATHMathSciNetGoogle Scholar
  182. [182]
    Thorbergsson, G.: Closed geodesics on non-compact Riemannian manifolds. Math. Z. 159(3), 249–258 (1978) MATHMathSciNetGoogle Scholar
  183. [183]
    Thurston, W.P.: Existence of codimension-one foliations. Ann. of Math. (2) 104(2), 249–268 (1976) MATHMathSciNetGoogle Scholar
  184. [184]
    Thurston, W.: The theory of foliations of codimension greater than one. Comment. Math. Helv. 49, 214–231 (1974) MATHMathSciNetGoogle Scholar
  185. [185]
    Traynor, L.: Symplectic packing constructions. J. Differ. Geom. 41(3), 735–751 (1995) MATHMathSciNetGoogle Scholar
  186. [186]
    Tsui, M.-P., Wang, M.-T.: Mean curvature flows and isotopy of maps between spheres. Commun. Pure Appl. Math. 57(8), 1110–1126 (2004) MATHMathSciNetGoogle Scholar
  187. [187]
    Uhlenbeck, K.K.: Connections with L p bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982) MATHMathSciNetGoogle Scholar
  188. [188]
    Vaaler, J.D.: A geometric inequality with applications to linear forms. Pac. J. Math. 83(2), 543–553 (1979) MATHMathSciNetGoogle Scholar
  189. [189]
    Vershik, A.M.: Classification of measurable functions of several arguments, and invariantly distributed random matrices. Funkc. Anal. Prilozh. 36(2), 12–27 (2002). 95 MathSciNetGoogle Scholar
  190. [190]
    Vershik, A.M.: Dynamics of metrics in measure spaces and their asymptotic invariants. Markov Process. Relat. Fields 16(1), 169–184 (2010) MATHMathSciNetGoogle Scholar
  191. [191]
    Viterbo, C.: A proof of Weinstein’s conjecture in R 2n. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4(4), 337–356 (1987) MATHMathSciNetGoogle Scholar
  192. [192]
    Viterbo, C.: Symplectic topology as the geometry of generating functions. Math. Ann. 292, 685–710 (1992) MATHMathSciNetGoogle Scholar
  193. [193]
    Wall, C.T.C.: Determination of the cobordism ring. Ann. Math. 72(2), 292–311 (1960). ArticleType: research-article/Full publication date: Sep., 1960 / Copyright © 1960 Annals of Mathematics MATHGoogle Scholar
  194. [194]
    Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1983). 1982 MathSciNetGoogle Scholar
  195. [195]
    Żuk, A.: Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal. 13(3), 643–670 (2003) MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. Burago
    • 1
  • Y. Eliashberg
    • 2
  • M. Bestvina
    • 3
  • F. Forstnerič
    • 4
  • L. Guth
    • 5
  • A. Nabutovsky
    • 6
  • A. Phillips
    • 7
  • J. Roe
    • 8
  • A. Vershik
    • 9
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA
  3. 3.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  4. 4.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Department of MathematicsUniversity of TorontoTorontoCanada
  7. 7.Department of MathematicsState University of New YorkStony BrookUSA
  8. 8.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  9. 9.Laboratory of Representation Theory and Computational MathematicsSt. Petersburg Department of Steklov Institute of MathematicsSt. PetersburgRussia

Personalised recommendations