Skip to main content

Translation in Mammalian Mitochondria: Order and Disorder Linked to tRNAs and Aminoacyl-tRNA Synthetases

  • Chapter
  • First Online:
Book cover Translation in Mitochondria and Other Organelles

Abstract

Transfer RNAs (tRNAs) and aminoacyl-tRNA synthetases (aaRSs) are key actors in all translation machineries. AaRSs aminoacylate cognate tRNAs with a specific amino acid that is transferred to the growing protein chain on the ribosome. Mammalian mitochondria possess their own translation machinery for the synthesis of 13 proteins only, all subunits of the respiratory chain complexes involved in the synthesis of ATP. While 22 tRNAs and two ribosomal RNAs are also coded by the mitochondrial genome, aaRSs are nuclear encoded and become imported. The fact that the two cellular genomes, nuclear and mitochondrial, evolve at different rates raises numerous questions as to the co-evolution of partner macromolecules. Herein we review the present state-of-the-art on structural, biophysical, and functional peculiarities of mammalian mitochondrial tRNAs and aaRSs, and of their partnership in their wild-type state. Then, we oppose this mitochondrial “order” to the “disorder” generated by the presence of a variety of mutations occurring in the corresponding human genes that have been correlated to an increasing number of diseases. So far, more than 230 mutations in mitochondrial tRNA genes and a rapidly growing number of mutations in mitochondrial aaRS genes have been reported as causative of a large variety of pathologies. The molecular incidence of mutations on structural, biophysical and functional properties of the related macromolecules will be summarized. Mutations in mitochondrial tRNA genes lead to complex mosaic effects with a major impact on tRNA structure. Some mutations affecting mitochondrial aaRS genes do not interfere with the housekeeping aminoacylation activity, suggesting that mitochondrial aaRSs, alike cytosolic aaRSs are involved in other processes than translation. This opens new research lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonzo JD, Söll D (2009) Mitochondrial tRNA import—the challenge to understand has just begun. Biol Chem 390:717–722

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrel BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon JC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Arcari P, Brownlee GG (1980) The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res 8:5207–5212

    Article  PubMed  CAS  Google Scholar 

  • Bayat V, Thiffault I, Jaiswal M, Tétreault M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire MJ, Mathieu J, Vanasse M, Bouchard JP, Rioux MF, Lourenco CM, Li Z, Haueter C, Shoubridge EA, Graham BH, Brais B, Bellen HJ (2012) Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol 10:e1001288

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, Segel R, Elpeleg O, Nassar S, Frishberg Y (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200

    Article  PubMed  CAS  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2012) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol [Epub ahead of print]

    Google Scholar 

  • Bonnefond L, Fender A, Rudinger-Thirion J, Giegé R, Florentz C, Sissler M (2005a) Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Biochemistry 44:4805–4816

    Article  PubMed  CAS  Google Scholar 

  • Bonnefond L, Frugier M, Giegé R, Rudinger-Thirion J (2005b) Human mitochondrial TyrRS disobeys the tyrosine idenity rules. RNA 11:558–562

    Article  PubMed  CAS  Google Scholar 

  • Bonnefond L, Frugier M, Touzé E, Lorber B, Florentz C, Giegé R, Sauter C, Rudinger-Thirion J (2007) Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features. Structure 15:1505–1516

    Article  PubMed  CAS  Google Scholar 

  • Braband A, Cameron SL, Podsiadlowski L, Daniels SR, Mayer G (2010) The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa. Mol Phylogenet Evol 57:285–292

    Article  PubMed  CAS  Google Scholar 

  • Brindefalk B, Viklund J, Larsson D, Thollesson M, Andersson SG (2007) Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. Mol Biol Evol 24:743–756

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Bullard J, Cai Y-C, Spremulli L (2000) Expression and characterization of the human mitochondrial leucyl-tRNA synthetase. Biochem Biophys Acta 1490:245–258

    Article  PubMed  CAS  Google Scholar 

  • Cader MZ, Ren J, James PA, Bird LE, Talbot K, Stammers DK (2007) Crystal structure of human wildtype and S581L-mutant glycyl-tRNA synthetase, an enzyme underlying distal spinal muscular atrophy. FEBS Lett 581:2959–2964

    Article  PubMed  CAS  Google Scholar 

  • Castellana S, Vicario S, Saccone C (2011) Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol Evol 3:1067–1079

    Article  CAS  Google Scholar 

  • Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 1387:628–644

    Article  CAS  Google Scholar 

  • Chimnaronk S, Gravers Jeppesen M, Suzuki T, Nyborg J, Watanabe K (2005) Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 24:3369–3379

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn MH, Schreier PH, Eperon IC, Barrell BG, Chen EY, Armstrong PW, Wong JF, Roe BA (1980) A mammalian mitochondrial serine transfer RNA lacking the “dihydrouridine” loop and stem. Nucleic Acids Res 8:5213–5222

    Article  PubMed  Google Scholar 

  • Dörner M, Altmann M, Pääbo S, Mörl M (2001) Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 12:2688–2698

    Article  PubMed  Google Scholar 

  • Duchêne AM, Pujol C, Maréchal-Drouard L (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 55:1–18

    Article  PubMed  CAS  Google Scholar 

  • Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–862

    Article  PubMed  CAS  Google Scholar 

  • Elo JM, Yadavalli SS, Euro L, Isohanni P, Götz A, Carroll CJ, Valanne L, Alkuraya FS, Uusimaa J, Paetau A, Caruso EM, Pihko H, Ibba M, Tyynismaa H, Suomalainen A (2012) Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Hum Mol Genet 21:4521–4529

    Article  PubMed  CAS  Google Scholar 

  • Enriquez JA, Attardi G (1996) Analysis of aminoacylation of human mitochondrial tRNAs. Methods Enzymol 264:183–196

    Article  PubMed  CAS  Google Scholar 

  • Fender A, Gaudry A, Jühling F, Sissler M, Florentz C (2012) Adaptation of aminoacylation rules to mammalian mitochondria. Biochimie 94:1090–1097

    Article  PubMed  CAS  Google Scholar 

  • Fender A, Sauter C, Messmer M, Pütz J, Giegé R, Florentz C, Sissler M (2006) Loss of a primordial identity element for a mammalian mitochondrial aminoacylation system. J Biol Chem 281:15980–15986

    Article  PubMed  CAS  Google Scholar 

  • Florentz C, Sissler M (2001) Disease-related versus polymorphic mutations in human mitochondrial tRNAs: where is the difference? EMBO Rep 2(6):481–486

    PubMed  CAS  Google Scholar 

  • Florentz C, Sissler M (2003) Mitochondrial tRNA aminoacylation and human diseases. In: Lapointe J, Brakier-Gingras L (eds) Translation mechanisms. Landes Bioscience, Georgetown, pp 129–143

    Google Scholar 

  • Florentz C, Sohm B, Tryoen-Tóth P, Pütz J, Sissler M (2003) Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci 60:1356–1375

    Article  PubMed  CAS  Google Scholar 

  • Frechin M, Duchêne A-M, Becker HD (2009a) Translating organellar glutamine codons: A case by case scenario? RNA Biol 6:31–34

    Article  PubMed  CAS  Google Scholar 

  • Frechin M, Senger B, Brayé M, Kern D, Martin RP, Becker HD (2009b) Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Friederich MW, Hagerman PJ (1997) The angle between the anticodon and aminoacyl acceptor stems of yeast tRNA(Phe) is strongly modulated by magnesium ions. Biochemistry 36:6090–6099

    Article  PubMed  CAS  Google Scholar 

  • Gaudry A, Lorber B, Messmer M, Neuenfeldt A, Sauter C, Florentz C, Sissler M (2012) Redesigned N-terminus enhances expression, solubility, and crystallisability of mitochondrial enzyme. Protein Eng Des Sel 25:473–481

    Article  PubMed  CAS  Google Scholar 

  • Giegé R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Giegé R, Florentz C, Kern D, Gangloff J, Eriani G, Moras D (1996) Aspartate identity of transfer RNAs. Biochimie 78:605–623

    Article  PubMed  Google Scholar 

  • Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C (2012) Structure of transfer RNAs: similarity and variability. Wiley Interdiscip Rev RNA 3:37–61

    Article  PubMed  CAS  Google Scholar 

  • Giegé R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017–5035

    Article  PubMed  Google Scholar 

  • Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653

    Article  PubMed  CAS  Google Scholar 

  • Götz A, Tyynismaa H, Euro L, Ellonen P, Hyötyläinen T, Ojala T, Hämäläinen RH, Tommiska J, Raivio T, Oresic M, Karikoski R, Tammela O, Simola KO, Paetau A, Tyni T, Suomalainen A (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Ignatov M, Musier-Forsyth K, Schimmel P, Yang XL (2008) Crystal structure of tetrameric form of human lysyl-tRNA synthetase: Implications for multisynthetase complex formation. Proc Natl Acad Sci USA 105:2331–2336

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Schimmel P (2013) Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 9:145–153

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Schimmel P, Yang X-L (2010a) Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 584:434–442

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Yang XL, Schimmel P (2010b) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11:668–674

    Article  PubMed  CAS  Google Scholar 

  • Haen KM, Pett W, Lavrov DV (2010) Parallel loss of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases and mtDNA-encoded tRNAs in Cnidaria. Mol Biol Evol 27:2216–2219

    Article  PubMed  CAS  Google Scholar 

  • Helm M, Attardi G (2004) Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys). J Mol Biol 337:545–560

    Article  PubMed  CAS  Google Scholar 

  • Helm M, Brulé H, Degoul F, Cepanec C, Leroux J-P, Giegé R, Florentz C (1998) The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res 26:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Helm M, Brulé H, Friede D, Giegé R, Pütz J, Florentz C (2000) Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6:1356–1379

    Article  PubMed  CAS  Google Scholar 

  • Helm M, Florentz C, Chomyn A, Attardi G (1999) Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res 27:756–763

    Article  PubMed  CAS  Google Scholar 

  • Hou YM, Yang X (2013) Regulation of cell death by transfer RNA. Antioxid Redox Signal [Epub ahead of print]

    Google Scholar 

  • Ibba M, Francklyn C, Cusack S (2005) The aminoacyl-tRNA synthetases. Landes Biosciences, Georgetown

    Google Scholar 

  • Jacobs HT, Holt IJ (2000) The np 3243 MELAS mutation: damned if you aminoacylate, damned if you don’t. Hum Mol Genet 1:463–465

    Article  Google Scholar 

  • Jacobs HT (2003) Disorders of mitochondrial protein synthesis. Hum Mol Genet 12:R293–301

    Google Scholar 

  • Jia J, Arif A, Ray PS, Fox PL (2008) WHEP domains direct noncanonical function of glutamyl-Prolyl-tRNA synthetase in translational control of gene expression. Mol Cell 29:679–690

    Article  PubMed  CAS  Google Scholar 

  • Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF (2012a) Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 40:2833–2845

    Article  PubMed  CAS  Google Scholar 

  • Jühling F, Pütz J, Florentz C, Stadler PF (2012b) Armless mitochondrial tRNAs in Enoplea (Nematoda). RNA Biol 9:1161–1166

    Article  PubMed  CAS  Google Scholar 

  • Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun SH, Kim S (2012) Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J 26:4142–4159

    Article  PubMed  CAS  Google Scholar 

  • Kirino Y, Goto Y, Campos Y, Arenas J, Suzuki T (2005) Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA 102:7127–7132

    Article  PubMed  CAS  Google Scholar 

  • Kleiman L, Cen S (2004) The tRNALys packaging complex in HIV-1. Int J Biochem Cell Biol 36:1776–1786

    Article  PubMed  CAS  Google Scholar 

  • Klipcan L, Levin I, Kessler N, Moor N, Finarov I, Safro M (2008) The tRNA-induced conformational activation of human mitochondrial phenylalanyl-tRNA synthetase. Structure 16:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Klipcan L, Moor N, Finarov I, Kessler N, Sukhanova M, Safro MG (2012) Crystal structure of human mitochondrial PheRS complexed with tRNA(Phe) in the active “open” state. J Mol Biol 415:527–537

    Article  PubMed  CAS  Google Scholar 

  • Konovalova S, Tyynismaa H (2013) Mitochondrial aminoacyl-tRNA synthetases in human disease. Mol Genet Metab [Epub ahead of print]

    Google Scholar 

  • Kumazawa Y, Himeno H, Miura K, Watanabe K (1991) Unilateral aminoacylation specificity between bovine mitochondria and eubacteria. J Biochem 109:421–427

    Google Scholar 

  • LaRiviere FJ, Wolfson AD, Uhlenbeck OC (2001) Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294:165–168

    Article  PubMed  CAS  Google Scholar 

  • Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172–175

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  PubMed  CAS  Google Scholar 

  • Levinger L, Mörl M, Florentz C (2004) Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res 32:5430–5441

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Macey JR, Larson A, Ananjeva NB, Papenfuss TJ (1997) Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs. Mol Biol Evol 14:30–39

    Article  PubMed  CAS  Google Scholar 

  • McFarland R, Elson JL, Taylor RW, Howell N, Turnbull DM (2004) Assigning pathogenicity to mitochondrial tRNA mutations: when ‘definitely maybe’ is not good enough. Trends Genet 20:591–596

    Article  PubMed  CAS  Google Scholar 

  • Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X (2010) tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37:688–698

    Article  CAS  Google Scholar 

  • Messmer M, Pütz J, Suzuki T, Suzuki T, Sauter C, Sissler M, Florentz C (2009) Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Res 37:6881–6895

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto H, Machida RJ, Nishida S (2010) Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. Comp Biochem Physiol Part D Genomics Proteomics 5:65–72

    Article  PubMed  CAS  Google Scholar 

  • Motorin Y, Helm M (2010) tRNA stabilization by modified nucleotides. Biochemistry 49:4934–4944

    Article  PubMed  CAS  Google Scholar 

  • Mudge SJ, Williams JH, Eyre HJ, Sutherland GR, Cowan PJ, Power DA (1998) Complex organisation of the 5′-end of the human glycine tRNA synthetase gene. Gene 209:45–50

    Article  PubMed  CAS  Google Scholar 

  • Nagao A, Suzuki T, Katoh T, Sakaguchi Y, Suzuki T (2009) Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci USA 106:16209–16214

    Article  PubMed  CAS  Google Scholar 

  • Nagao A, Suzuki T, Suzuki T (2007) Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria. Nucleic Acids Symp Ser (Oxf) 51:41–42

    Article  CAS  Google Scholar 

  • Nawroki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: Inference of RNA Alignments. Bioinformatics 25:1335–1337

    Article  CAS  Google Scholar 

  • Neuenfeldt A, Lorber B, Ennifar E, Gaudry A, Sauter C, Sissler M, Florentz C (2013) Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Nucleic Acids Res 41:2698–2708

    Article  PubMed  CAS  Google Scholar 

  • Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 49:30–42

    PubMed  CAS  Google Scholar 

  • Park MC, Kang T, Jin D, Han JM, Kim SB, Park YJ, Cho K, Park YW, Guo M, He W, Yang XL, Schimmel P, Kim S (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci USA 109:E640–E647

    PubMed  CAS  Google Scholar 

  • Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105:11043–11049

    Article  PubMed  CAS  Google Scholar 

  • Pierce SB, Chisholm KM, Lynch ED, Lee MK, Walsh T, Opitz JM, Li W, Klevit RE, King MC (2011) Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci USA 108:6543–6548

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 5(Database issue):D61–D65

    Google Scholar 

  • Pütz J, Dupuis B, Sissler M, Florentz C (2007) Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA 13:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Riley LG, Cooper S, Hickey P, Rudinger-Thirion J, McKenzie M, Compton A, Lim SC, Thorburn D, Ryan MT, Giegé R, Bahlo M, Christodoulou J (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia–MLASA syndrome. Am J Hum Genet 87:52–59

    Article  PubMed  CAS  Google Scholar 

  • Rinehart J, Krett B, Rubio M-AT, Alfonzo JD, Söll D (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondion. Genes Dev 19:583–592

    Article  PubMed  CAS  Google Scholar 

  • Rötig A (2011) Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 1807:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, Muravina TI, Serkov SV, Uziel G, Bugiani M, Schiffmann R, Krageloh-Mann I, Smeitink JA, Florentz C, Coster RV, Pronk JC, van der Knaap MS (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39:534–539

    Article  PubMed  CAS  Google Scholar 

  • Schwenzer H, Zoll J, Florentz C, Sissler M (2013) Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases. In: KIM (ed) Topics in current chemistry-aminoacyl-tRNA synthetases: Applications in chemistry, Biology and Medicine. Springer (in press)

    Google Scholar 

  • Segovia R, Pett W, Trewick S, Lavrov DV (2011) Extensive and evolutionarily persistent mitochondrial tRNA editing in Velvet Worms (phylum Onychophora). Mol Biol Evol 28:2873–2881

    Article  PubMed  CAS  Google Scholar 

  • Seutin G, Lang BF, Mindell DP, Morais R (1994) Evolution of the WANCY region in amniote mitochondrial DNA. Mol Biol Evol 11:329–340

    PubMed  CAS  Google Scholar 

  • Shiba K, Schimmel P, Motegi H, Noda T (1994) Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 269:30049–30055

    PubMed  CAS  Google Scholar 

  • Shoffner J, Lott M, Lezza AMS, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged red fiber disease (MERRF) is associated with mitochondrial DNA tRNALys mutation. Cell 61:931–937

    Article  PubMed  CAS  Google Scholar 

  • Sissler M, Pütz J, Fasiolo F, Florentz C (2005) Mitochondrial aminoacyl-tRNA synthetases. In: Ibba M, Francklyn C, Cusack S (eds), Aminoacyl-tRNA synthetases, chapter 24, pp 271–284. Landes Biosciences, Georgetown

    Google Scholar 

  • Sohm B, Frugier M, Brulé H, Olszak K, Przykorska A, Florentz C (2003) Towards understanding human mitochondrial leucine aminoacylation identity. J Mol Biol 328:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Steenweg ME, Ghezzi D, Haack T, Abbink TE, Martinelli D, van Berkel CG, Bley A, Diogo L, Grillo E, Te Water Naudé J, Strom TM, Bertini E, Prokisch H, van der Knaap MS, Zeviani M (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain 135:1387–1394

    Google Scholar 

  • Suga K, Mark Welch DB, Tanaka Y, Sakakura Y, Hagiwara A (2008) Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Mol Biol Evol 25:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    Article  PubMed  CAS  Google Scholar 

  • Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  PubMed  CAS  Google Scholar 

  • Tolkunova E, Park H, Xia J, King MP, Davidson E (2000) The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual splicing of the primary transcript. J Biol Chem 275:35063–35069

    Article  PubMed  CAS  Google Scholar 

  • van Berge L, Dooves S, van Berkel CG, Polder E, van der Knaap MS, Scheper GC (2012) Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation is associated with cell-type-dependent splicing of mtAspRS mRNA. Biochem J 441:955–962

    Article  PubMed  CAS  Google Scholar 

  • van der Knaap MS, van der Voorn P, Barkhof F, Van Coster R, Krägeloh-Mann I, Feigenbaum A, Blaser S, Vles JS, Rieckmann P, Pouwels PJ (2003) A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol 53:252–258

    Article  PubMed  Google Scholar 

  • Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P (2002a) Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 277:20124–20126

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P (2002b) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 99:173–177

    Article  PubMed  CAS  Google Scholar 

  • Wakita K, Watanabe Y-I, Yokogawa T, Kumazawa Y, Nakamura S, Ueda T, Watanabe K, Nishikawa K (1994) Higher-order structure of bovine mitochondrial tRNAPhe lacking the ‘conserved’ GG and TYCG sequences as inferred by enzymatic and chemical probing. Nucleic Acids Res 22:347–353

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Lavrov DV (2008) Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. PLoS ONE 3:e2723

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K (2010) Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:11–36

    Article  PubMed  CAS  Google Scholar 

  • Willkomm DK, Hartmann RK (2006) Intricacies and surprises of nuclear-mitochondrial co-evolution. Biochem J 399:e7–e9

    Article  PubMed  CAS  Google Scholar 

  • Wittenhagen LM, Kelley SO (2003) Impact of disease-related mitochondrial mutations on tRNA structure and function. Trends Biochem Sci 28:605–611

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Söll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol and Mol Biol Reviews 64:202–236

    Article  CAS  Google Scholar 

  • Wolstenholme DR, Okimoto R, Mcfarlane JL (1994) Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. Nucleic Acids Res 22:4300–4306

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Schimmel P, Yang XL (2006) Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot-Marie-Tooth disease. Acta Crystallograph Sect F Struct Biol Cryst Commun 62:1243–1246

    Article  CAS  Google Scholar 

  • Yadavalli SS, Klipcan L, Zozulya A, Banerjee R, Svergun D, Safro M, Ibba M (2009) Large-scale movement of functional domains facilitates aminoacylation by human mitochondrial phenylalanyl-tRNA synthetase. FEBS Lett 583:3204–3208

    Article  PubMed  CAS  Google Scholar 

  • Yao YN, Wang L, Wu XF, Wang ED (2003) The processing of human mitochondrial leucyl-tRNA synthetase in the insect cells. FEBS Lett 534:139–142

    Article  PubMed  CAS  Google Scholar 

  • Yarham JW, Al-Dosary M, Blakely EL, Alston CL, Taylor RW, Elson JL, McFarland R (2011) A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat 32:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW (2010) Mitochondrial tRNA mutations and disease. Wiley Interdiscip Rev RNA 1:304–324

    Article  PubMed  CAS  Google Scholar 

  • Ylikallio E, Suomalainen A (2012) Mechanisms of mitochondrial diseases. Ann Med 44:41–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Richard Giegé for critical reading of the manuscript and Gert Scheper and Koen de Groot for help in the qPCR experiments. Numerous contributions on mt-tRNAs and aaRS could not be mentioned because of space limitation and we apologize for this. Financial support came from Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, ANR MITOMOT (ANR-09-BLAN-0091-01/03), French National Program ‘Investissements d’Avenir’ (Labex MitoCross) administered by the “Agence National de la Recherche”, and referenced ANR-10-IDEX-002-02; French-German PROCOPE program (DAAD D/0628236, EGIDE PHC 14770PJ), and German Academic Exchange Service (DAAD D/10/43622) for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Florentz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Florentz, C. et al. (2013). Translation in Mammalian Mitochondria: Order and Disorder Linked to tRNAs and Aminoacyl-tRNA Synthetases. In: Duchêne, AM. (eds) Translation in Mitochondria and Other Organelles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39426-3_3

Download citation

Publish with us

Policies and ethics