Advertisement

Discriminatory Processor Sharing from Optimization Point of View

  • Jozsef Biro
  • Tamás Bérczes
  • Attila Kő̈rösi
  • Zalan Heszberger
  • János Sztrik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7984)

Abstract

Discriminatory Processor Sharing models play important role in analysing bandwidth allocation schemes in packet based communication systems. Users in such systems usually have access rate limitations which also influence their bandwidth shares. This paper is concerned with DPS models which incorporate these access rate limitations in a bandwidth economical manner.

In this paper the interlock between access rate limited Discriminatory Processor Sharing (DPS) models and some constrained optimization problems is investigated. It is shown, that incorporating the access rate limit into the DPS model is equivalent to extending the underlying constrained optimization by constraints on the access rates. It also means that the available bandwidth share calculation methods for the access rate limited DPS are also non-conventional solution methods for the extended constrained optimization problem.

We also foreshadow that these results might be important steps towards obtaining efficient pricing and resource allocation mechanism when users are selfish and subject to gaming behavior when competing for communication resources.

Keywords

Queue Length Bandwidth Allocation Access Rate Proportional Allocation Processor Sharing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avrachenkov, K., Ayesta, U., Brown, P., Nez-Queija, R.: Discriminatory processor sharing revisited. In: Proc. IEEE Infocom 2005, Miami, FL, pp. 784–795 (2005)Google Scholar
  2. 2.
    Ayesta, U., Mandjes, M.: Bandwidth-sharing networks under a diffusion scaling. Annals Operation Research 170(1), 41–58 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cheung, S., van den Berg, H., Boucherie, R.: Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues. Performance Evaluation 62(1-4), 100–116 (2005)CrossRefGoogle Scholar
  4. 4.
    Fan, Z.: Dimensioning Bandwidth for Elastic Traffic. In: Gregori, E., Conti, M., Campbell, A.T., Omidyar, G., Zukerman, M. (eds.) NETWORKING 2002. LNCS, vol. 2345, pp. 826–837. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Fayolle, G., Mitrani, I., Iasnogorodski, R.: Sharing a processor among many job classes. J. ACM 27(3), 519–532 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Frolkova, M., Reed, J., Zwart, B.: Fixed-point approximations of bandwidth sharing networks with rate constraints. Performance Evaluation Review 39(3), 47–49 (2011)CrossRefGoogle Scholar
  7. 7.
    Johari, R.: The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms. In: Algorithmic Game Theory, pp. 543–568. Cambridge Univ. Press (2007)Google Scholar
  8. 8.
    Kelly, F.: Charging and rate control for elastic traffic. European Transactions on Telecommunications 8, 33–37 (1997)CrossRefGoogle Scholar
  9. 9.
    van Kessel, G., Nunez-Queija, R., Borst, S.: Asymptotic regimes and approximations for discriminatory processor sharing. ACM SIGMETRICS Performance Evaluation Review 32(2), 44–46 (2004)CrossRefGoogle Scholar
  10. 10.
    Kőrösi, A., Székely, B., Vámos, P., Bíró, J.: Characterization of peak-rate limited DPS with Pareto-efficient bandwidth sharing. Annales Mathematicae et Informaticae 39 (2012)Google Scholar
  11. 11.
    Kleinrock, L.: Time-shared systems: A theoretical treatment. J. of ACM 14(2), 242–261 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lakshmikantha, A., Srikant, R., Beck, C.: Differential equation models of flow-size based priorities in internet routers. International Journal of Systems, Control and Communications 2(1), 170–196 (2010)CrossRefGoogle Scholar
  13. 13.
    Lindberger, K.: Balancing quality of service, pricing and utilisation in multiservice networks with stream and elastic traffic. In: ITC-16: International Teletraffic Congress, pp. 1127–1136 (1999)Google Scholar
  14. 14.
    O’Donovan, T.M.: Direct solutions of M/G/1 processor-sharing models. Operations Research 22, 1232–1235 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pályi, P.L., Kőrösi, A., Székely, B., Bíró, J., Rácz, S.: Characterization of peak-rate limited bandwidth efficient DPS. Acta Polytechnica Hungarica 9 (2012)Google Scholar
  16. 16.
    Rege, K., Sengupta, B.: Queue length distribution for the discriminatory processor-sharing queue. Operation Research 44, 653–657 (1996)zbMATHCrossRefGoogle Scholar
  17. 17.
    Riedl, A., Bauschert, T., Frings, J.: A framework for multi-service IP network planning. In: International Telecommunication Network Strategy and Planning Symposium (Networks), pp. 183–190 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jozsef Biro
    • 2
  • Tamás Bérczes
    • 1
  • Attila Kő̈rösi
    • 3
  • Zalan Heszberger
    • 3
  • János Sztrik
    • 1
  1. 1.Faculty of InformaticsUniversity of DebrecenHungary
  2. 2.Inter-University Centre for Telecommunications and InformaticsDebrecenHungary
  3. 3.MTA-BME Information Systems Research GroupBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations