Advertisement

A Web-Service for Object Detection Using Hierarchical Models

  • Domen Tabernik
  • Luka Čehovin
  • Matej Kristan
  • Marko Boben
  • Aleš Leonardis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7963)

Abstract

This paper proposes an architecture for an object detection system suitable for a web-service running distributed on a cluster of machines. We build on top of a recently proposed architecture for distributed visual recognition system and extend it with the object detection algorithm. As sliding-window techniques are computationally unsuitable for web-services we rely on models based on state-of-the-art hierarchical compositions for the object detection algorithm. We provide implementation details for running hierarchical models on top of a distributed platform and propose an additional hypothesis verification step to reduce many false-positives that are common in hierarchical models. For a verification we rely on a state-of-the-art descriptor extracted from the hierarchical structure and use a support vector machine for object classification. We evaluate the system on a cluster of 80 workers and show a response time of around 10 seconds at throughput of around 60 requests per minute.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  2. 2.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on PAMI 32, 1627–1645 (2010)CrossRefGoogle Scholar
  3. 3.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Fidler, S., Boben, M., Leonardis, A.: Evaluating multi-class learning strategies in a generative hierarchical framework for object detection. In: NIPS (2009)Google Scholar
  5. 5.
    Fidler, S., Leonardis, A.: Towards scalable representations of object categories: Learning a hierarchy of parts. In: CVPR. IEEE Computer Society (2007)Google Scholar
  6. 6.
    Kokkinos, I., Yuille, A.: Inference and learning with hierarchical shape models. Int. J. Comput. Vision 93(2), 201–225 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object localization by efficient subwindow search. In: CVPR, pp. 1–8 (2008)Google Scholar
  8. 8.
    Tabernik, D., Kristan, M., Boben, M., Leonardis, A.: Learning statistically relevant edge structure improves low-level visual descriptors. In: ICPR (2012)Google Scholar
  9. 9.
    Tabernik, D., Čehovin, L., Kristan, M., Boben, M., Leonardis, A.: Vicos eye - a webservice for visual object categorization. In: Proc. of the 18th Computer Vision Winter Workshop (2013)Google Scholar
  10. 10.
    Wojek, C., Dorkó, G., Schulz, A., Schiele, B.: Sliding-windows for rapid object class localization: A parallel technique. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 71–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Zhu, L., Chen, Y., Torralba, A., Freeman, W., Yuille, A.: Part and appearance sharing: Recursive compositional models for multi-view. In: CVPR, pp. 1919–1926 (June 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Domen Tabernik
    • 1
  • Luka Čehovin
    • 1
  • Matej Kristan
    • 1
  • Marko Boben
    • 1
  • Aleš Leonardis
    • 1
    • 2
  1. 1.Faculty of Computer and Information ScienceUniversity of LjubljanaSlovenia
  2. 2.CN-CR Centre, School of Computer ScienceUniversity of BirminghamUK

Personalised recommendations