Skip to main content

Ordinary Differential Equations

  • Chapter
  • First Online:
Book cover The Concept of Stability in Numerical Mathematics

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 45))

  • 2144 Accesses

Abstract

The numerical treatment of ordinary differential equations is a field whose scope has broadened quite a bit over the last 50 years. In particular, a whole spectrum of different stability conditions has developed. Since this chapter is not the place to present all details, we concentrate on the most basic concept of stability. As a side- product, it will lead us to the power bounded matrices, which is a class of matrices with certain stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butcher, J.C.: A history of Runge-Kutta methods. Appl. Numer. Math. 20, 247–260 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    MATH  MathSciNet  Google Scholar 

  3. Deuflhard, P., Bornemann, F.: Scientific computing with ordinary differential equations. Springer, New York (2002)

    Book  MATH  Google Scholar 

  4. Deuflhard, P., Bornemann, F.: Numerische Mathematik II. Gewöhnliche Differentialgleichungen, 3rd ed. Walter de Gruyter, Berlin (2008)

    Google Scholar 

  5. Gautschi, W.: Numerical Analysis. An Introduction. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  6. Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, New York (1994)

    Book  MATH  Google Scholar 

  7. Hahn, W.: Stability of Motion. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd ed. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  10. Heun, K.: Neue Methoden zur approximativen Integration der Differentialgleichungen einer unabhängigen Veränderlichen. Z. für Math. und Phys. 45, 23–38 (1900)

    MATH  Google Scholar 

  11. Heuser, H.: Gewöhnliche Differentialgleichungen. Teubner, Stuttgart (1991)

    MATH  Google Scholar 

  12. Kaluza, T.: Über Koeffizienten reziproker Potenzreihen. Math. Z. 28, 161–170 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kreiss, H.O.: Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. BIT 2, 153–181 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kunkel, P., Mehrmann, V.: Differential-algebraic equations - analysis and numerical solution. EMS, Zürich (2006)

    Book  MATH  Google Scholar 

  15. Kutta, W.M.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. für Math. und Phys. 46, 435–453 (1901)

    MATH  Google Scholar 

  16. Lipschitz, R.O.S.: Lehrbuch der Analysis, Vol. 2. Cohen, Bonn (1880)

    Google Scholar 

  17. Morton, K.W.: On a matrix theorem due to H. O. Kreiss. Comm. Pure Appl. Math. 17, 375–379 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  18. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-value Problems, 2nd ed. Interscience Publishers, New York (1967)

    MATH  Google Scholar 

  19. Runge, C.D.T.: Ueber die numerische Auflösung von Differentialgleichungen. Math. Ann. 46, 167–178 (1895)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. North-Holland, Amsterdam (1973)

    Book  MATH  Google Scholar 

  21. Terrel, W.J.: Stability and Stabilization - An Introduction. Princeton University Press, Princeton and Oxford (2009)

    Google Scholar 

  22. Toh, K.C., Trefethen, L.N.: The Kreiss matrix theorem on a general complex domain. SIAM J. Matrix Anal. Appl. 21, 145–165 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Werner, H., Arndt, H.: Gewöhnliche Differentialgleichungen. Eine Einführung in Theorie und Praxis. Springer, Berlin (1986)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hackbusch, W. (2014). Ordinary Differential Equations. In: The Concept of Stability in Numerical Mathematics. Springer Series in Computational Mathematics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39386-0_5

Download citation

Publish with us

Policies and ethics