Towards a Categorical Theory of Creativity for Music, Discourse, and Cognition

  • Moreno Andreatta
  • Andrée Ehresmann
  • René Guitart
  • Guerino Mazzola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7937)


This article presents a first attempt at establishing a category-theoretical model of creative processes. The model, which is applied to musical creativity, discourse theory, and cognition, suggests the relevance of the notion of “colimit” as a unifying construction in the three domains as well as the central role played by the Yoneda Lemma in the categorical formalization of creative processes.


Creative Process Categorical Theory Full Subcategory Common Subspace Conceptual Blending 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acotto, E., Andreatta, M.: Between Mind and Mathematics. Different Kinds of Computational Representations of Music. Mathematics and Social Sciences 199(50e année), 9–26 (2012)Google Scholar
  2. 2.
    Bastiani(-Ehresmann), A., Ehresmann, C.: Categories of sketched structures, Cahiers Top. et Géom. Dif. XIII-2 (1972),
  3. 3.
    Boden, M.A.: Conceptual Spaces. In: Meusburger, P., et al. (eds.) Milieus of Creativity. Springer (2009)Google Scholar
  4. 4.
    Cope, D.: Computer Models of Musical Creativity. MIT Press, Cambridge (2005)Google Scholar
  5. 5.
    Edelman, G.M.: The remembered Present. Basic Books, New York (1989)Google Scholar
  6. 6.
    Ehresmann, A., Vanbremeersch, J.-P.: Semantics and Communication for Memory Evolutive Systems. In: Lasker (ed.) Proc. 6th Intern. Conf. on Systems Research. International Institute for Advanced Studies in Systems Research and Cybernetics, University of Windsor (1992),
  7. 7.
    Ehresmann, A., Vanbremeersch, J.-P.: Memory Evolutive Systems: Hierarchy, Emergence, Cognition. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  8. 8.
    Fauconnier, G., Turner, M.: The way we think. Basic Books (2002) (reprint)Google Scholar
  9. 9.
    Forth, J., Wiggins, G.A., McLean, A.: Unifying Conceptual Spaces: Concept Formation in Musical Creative Systems. Minds & Machines 20, 503–532 (2010)CrossRefGoogle Scholar
  10. 10.
    Gärdenfors, P.: Conceptual Spaces: On the Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Goguen, J.: An Introduction to Algebraic Semiotics, with Application to User Interface Design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Goguen, J., Harrell, D.F.: Style: A Computational and Conceptual Blending-Based Approach. In: Dubnov, S., et al. (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Springer (2009)Google Scholar
  13. 13.
    Guitart, R.: L’idée de Logique Spéculaire. Journées Catégories, Algèbres, Esquisses, Néo-esquisses, Caen, Septembre 27-30, p. 6 (1994)Google Scholar
  14. 14.
    Guitart, R.: Cohomological Emergence of Sense in Discourses (As Living Systems Following Ehresmann and Vanbremeersch). Axiomathes 19(3), 245–270 (2009)CrossRefGoogle Scholar
  15. 15.
    Guitart, R.: A Hexagonal Framework of the Field \(\mathbb{F}_4\) and the Associated Borromean Logic. Log. Univers. 6, 119–147 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the Structural Core of Human Cerebral Cortex. PLoS Biology 6(7), 1479–1493 (2008)CrossRefGoogle Scholar
  17. 17.
    Halford, G.S., Wilson, W.H.: A Category-Theory approach to cognitive development. Cognitive Psychology 12, 356–411 (1980)CrossRefGoogle Scholar
  18. 18.
    Hofstadter, D.: Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thoughts. Basic Books (1995)Google Scholar
  19. 19.
    Kan, D.M.: Adjoint Functors. Transactions of the American Mathematical Society 87, 294–329 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Ph.D. Thesis, Columbia University (1963)Google Scholar
  21. 21.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971)zbMATHCrossRefGoogle Scholar
  22. 22.
    Mazzola, G., et al.: The Topos of Music—Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)zbMATHGoogle Scholar
  23. 23.
    Mazzola, G., Park, J., Thalmann, F.: Musical Creativity, Heidelberg. Springer Series Computational Music Science (2011)Google Scholar
  24. 24.
    Mazzola, G.: Singular Homology on Hypergestures. Journal of Mathematics and Music 6(1), 49–60 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Peirce, C.S.: Collected Papers, vol. I-VI (1931-1935), par Hartshorne, C., Weiss, P.: vol. VII-VIII (1958), par Burks, W.: Harvard University Press. HarvardGoogle Scholar
  26. 26.
    Pereira, F.C.: Creativity and Artificial Intelligence - A Conceptual Blending Approach (2007)Google Scholar
  27. 27.
    Phillips, S., Wilson, W.H.: Categorical Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition. PLoS Computational Biology 6(7), 1–14 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Post, E.: Introduction to a General Theory of Elementary Propositions. American Journal of Mathematics 43, 163–185 (1921)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Shannon, C., Weaver, W.: The Mathematical Theory of Communication (1949)Google Scholar
  30. 30.
    Spanier, E.: Algebraic Topology. McGraw Hill, New York (1966)zbMATHGoogle Scholar
  31. 31.
    Uhde, J.: Beethovens Klaviermusik III. Reclam, Stuttgart (1974)Google Scholar
  32. 32.
    Zbikowski, L.M.: Conceptualizing Music: Cognitive Structures, Theory, and Analysis. Oxford University Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Moreno Andreatta
    • 1
  • Andrée Ehresmann
    • 2
  • René Guitart
    • 3
  • Guerino Mazzola
    • 4
  1. 1.IRCAM/CNRS/UPMCFrance
  2. 2.Université de PicardieFrance
  3. 3.Université Paris 7 Denis DiderotFrance
  4. 4.School of MusicUniversity of MinnesotaUSA

Personalised recommendations