Advertisement

MTIS: A Multi-Touch Text Input System

  • Michael Schmidt
  • Anja Fibich
  • Gerhard Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8028)

Abstract

Entering text by gesture alphabets is not one of the most efficient methods. However, there are special applications and contexts where it shows advantages. Input with little focus of attention is possible and, for short phrases, transition to other input options may be more involving. The work at hand presents a new multi-touch gesture alphabet. Multi-touch can accelerate gesture input and provides the diversity that allows to confine to single strokes that demand less attention. We analyzed the characteristics of the alphabet and compared it to a single-touch variant. Detailed investigations of text input by gestures and results of a user study are provided. The investigations revealed preferences of users and showed the need for individualization and self-definition of gestures. To meet this demands, our approach for classifying template defined letters is demonstrated.

Keywords

gesture alphabet text input classification recognition template-based multi-touch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apte, A., Vo, V., Kimura, T.D.: Recognizing multistroke geometric shapes: an experimental evaluation. In: UIST 1993: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, pp. 121–128. ACM, New York (1993)Google Scholar
  2. 2.
    Bi, X., Chelba, C., Ouyang, T., Partridge, K., Zhai, S.: Bimanual gesture keyboard. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST 2012, pp. 137–146. ACM, New York (2012)Google Scholar
  3. 3.
    Chatty, S., Lecoanet, P.: Pen computing for air traffic control. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Common Ground, CHI 1996, pp. 87–94. ACM, New York (1996)CrossRefGoogle Scholar
  4. 4.
    Coyette, A., Schimke, S., Vanderdonckt, J., Vielhauer, C.: Trainable sketch recognizer for graphical user interface design. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 124–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Fibich, A.: Evaluation von Gestenalphabeten. Diploma thesis, Dresden University of Technology (2012)Google Scholar
  6. 6.
    Goldberg, D., Richardson, C.: Touch-typing with a stylus. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, CHI 1993, pp. 80–87. ACM, New York (1993)Google Scholar
  7. 7.
    Isokoski, P., Raisamo, R.: Device independent text input: a rationale and an example. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2000, pp. 76–83. ACM, New York (2000)CrossRefGoogle Scholar
  8. 8.
    Kane, S.K., Bigham, J.P., Wobbrock, J.O.: Slide rule: making mobile touch screens accessible to blind people using multi-touch interaction techniques. In: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, Assets 2008, pp. 73–80. ACM, New York (2008)Google Scholar
  9. 9.
    Költringer, T., Grechenig, T.: Comparing the immediate usability of graffiti 2 and virtual keyboard. In: CHI 2004 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2004, pp. 1175–1178. ACM, New York (2004)Google Scholar
  10. 10.
    Kristensson, P.-O., Zhai, S.: Shark2: a large vocabulary shorthand writing system for pen-based computers. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, UIST 2004, pp. 43–52. ACM, New York (2004)Google Scholar
  11. 11.
    Landay, J.A., Myers, B.A.: Interactive sketching for the early stages of user interface design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1995, pp. 43–50. ACM Press/Addison-Wesley Publishing Co., New York (1995)Google Scholar
  12. 12.
    Scott MacKenzie, I., Chen, J., Oniszczak, A.: Unipad: single stroke text entry with language-based acceleration. In: Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, NordiCHI 2006, pp. 78–85. ACM, New York (2006)CrossRefGoogle Scholar
  13. 13.
    MacKenzie, I.S., Tanaka-Ishii, K.: Text Entry Systems: Mobility, Accessibility, Universality. The Morgan Kaufmann Series in Interactive Technologies, Boston (2007)Google Scholar
  14. 14.
    Mankoff, J., Abowd, G.D.: Cirrin: a word-level unistroke keyboard for pen input. In: Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology, UIST 1998, pp. 213–214. ACM, New York (1998)Google Scholar
  15. 15.
    Martin, B.: Virhkey: a virtual hyperbolic keyboard with gesture interaction and visual feedback for mobile devices. In: Proceedings of the 7th International Conference on Human Computer Interaction with Mobile Devices & Services, MobileHCI 2005, pp. 99–106. ACM, New York (2005)Google Scholar
  16. 16.
    McGookin, D., Brewster, S., Jiang, W.: Investigating touchscreen accessibility for people with visual impairments. In: Proceedings of the 5th Nordic Conference on Human-Computer Interaction: Building Bridges, NordiCHI 2008, pp. 298–307. ACM, New York (2008)Google Scholar
  17. 17.
    Perlin, K.: Quikwriting: continuous stylus-based text entry. In: Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology, UIST 1998, pp. 215–216. ACM, New York (1998)Google Scholar
  18. 18.
    Poirier, F., Belatar, M.: Glyph 2: une saisie de texte avec deux appuis de touche par caractère - principes et comparaisons. In: Proceedings of the 18th International Conferenceof the Association Francophone d’Interaction Homme-Machine, IHM 2006, pp. 159–162. ACM, New York (2006)CrossRefGoogle Scholar
  19. 19.
    Rick, J.: Performance optimizations of virtual keyboards for stroke-based text entry on a touch-based tabletop. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST 2010, pp. 77–86. ACM, New York (2010)CrossRefGoogle Scholar
  20. 20.
    Schmidt, M., Weber, G.: Multitouch Haptic Interaction. In: Stephanidis, C. (ed.) UAHCI 2009, Part II. LNCS, vol. 5615, pp. 574–582. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Schmidt, M., Weber, G.: Template based classification of multi-touch gestures. Pattern Recognition (2013), doi:10.1016/j.patcog.2013.02.001Google Scholar
  22. 22.
    Wobbrock, J.O., Hudson, S.E., Mankoff, J., Simpson, R.C.: Edgewrite: A versatile design for text entry and control. Technical report (2006)Google Scholar
  23. 23.
    Yu, B., Cai, S.: A domain-independent system for sketch recognition. In: Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE 2003, pp. 141–146. ACM, New York (2003)Google Scholar
  24. 24.
    Zhai, S., Hunter, M., Smith, B.A.: Performance optimization of virtual keyboards. Human-Computer Interaction, 89–129 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Schmidt
    • 1
  • Anja Fibich
    • 1
  • Gerhard Weber
    • 1
  1. 1.Institute of Applied Science, Human-Computer InteractionDresden University of TechnologyDresdenGermany

Personalised recommendations