Unobtrusive Recognition of Working Situations

  • Tobias Grosse-Puppendahl
  • Sebastian Benchea
  • Felix Kamieth
  • Andreas Braun
  • Christian Schuster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8028)


In many countries, people are obliged to remain in their jobs for a long time. This results in an increased number of elderly people with certain disabilities in working life. Therefore, a support with technical assistance systems can avoid further health risks and help employees in their everyday life. An important step for offering a suitable assistance is the automatic recognition of working situations. In this paper we explore the unobtrusive data acquisition and classification of working situations above a tabletop surface. Therefore, a grid of capacitive sensors is deployed directly underneath the tabletop.


activity recognition capacitive sensing working situations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tabard, A., Hincapié-Ramos, J.-D., Esbensen, M., Bardram, J.E.: The eLabBench: an interactive tabletop system for the biology laboratory. In: ITS 2011, pp. 202–211 (2011)Google Scholar
  2. 2.
    Chang, K.H., Liu, S.Y., Chu, H.H., Hsu, J.J., Chen, C., Lin, T.Y., Chen, C.Y., Huang, P.: The diet-aware dining table: Observing dietary behaviors over a tabletop surface. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 366–382. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cheng, J., Amft, O., Lukowicz, P.: Active capacitive sensing: Exploring a new wearable sensing modality for activity recognition. In: PerCom 2010, pp. 319–336 (2010)Google Scholar
  4. 4.
    Dietz, P., Leigh, D.: DiamondTouch: A Multi-User Touch Technology. In: UIST 2001, pp. 219–226 (2001)Google Scholar
  5. 5.
    Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: OpenCapSense: A Rapid Prototyping Toolkit for Pervasive Interaction Using Capacitive Sensing. In: PerCom 2013 (2013)Google Scholar
  6. 6.
    Grosse-Puppendahl, T., Marinc, A., Braun, A.: Classification of User Postures with Capacitive Proximity Sensors in AAL-Environments. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 314–323. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Seong, J., Lee, W., Lim, Y.-K.: Why we cannot work without paper even in a computerized work environment. In: CHI 2009 EA, pp. 4105–4110 (2009)Google Scholar
  8. 8.
    Rekimoto, J.: SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In: CHI 2002, pp. 113–120 (2002)Google Scholar
  9. 9.
    Smith, J.R., Gershenfeld, N., Benton, S.A.: Electric Field Imaging. PhD Thesis (1999)Google Scholar
  10. 10.
    Steimle, J., Khalilbeigi, M., Mühlhäuser, M., Hollan, J.D.: Physical and digital media usage patterns on interactive tabletop surfaces. In: ITS 2010, pp. 167–176 (2010)Google Scholar
  11. 11.
    Wimmer, R., Kranz, M., Boring, S., Schmidt, A.: A Capacitive Sensing Toolkit for Pervasive Activity Detection and Recognition. In: PerCom 2007 pp. 171–180 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tobias Grosse-Puppendahl
    • 1
  • Sebastian Benchea
    • 1
  • Felix Kamieth
    • 1
  • Andreas Braun
    • 1
  • Christian Schuster
    • 2
  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations