Advertisement

Affect-Based Retrieval of Landscape Images Using Probabilistic Affective Model

  • Yunhee Shin
  • Eun Yi Kim
  • Tae-Eung Sung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8008)

Abstract

We consider the problem of ranking the web image search using human affects. For this, a Probabilistic Affective Model (PAM) is presented for predicting the affects from color compositions (CCs) of images, then the retrieval system is developed using them. The PAM first segments an image into seed regions, then extracts CCs among seed regions and their neighbors, finally infer the numerical ratings of certain affects by comparing the extracted CCs with pre-defined human-devised color triplets. The performance of the proposed system has been studied at an online demonstration site where 52 users search 16,276 landscape images using affects, then the results demonstrated its effectiveness in affect-based image annotation and retrieval.

Keywords

Affect-based image retrieval probabilistic affective model meanshift clustering color image scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying Aesthetics in Photographic Images Using a Computational Approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Kobayashi, S.: Color Image Scale. Publishing of Kodansha (1991)Google Scholar
  3. 3.
    Wei, K., He, B., Zhang, T., He, W.: Image emotional classification based on color semantic description. In: Tang, C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 485–491. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Shin, Y., Kim, E.Y., Kim, Y.: Automatic textile image annotation by prediction emotional concepts from visual features. Image and Vision Computing 28, 526–537 (2010)CrossRefGoogle Scholar
  5. 5.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  6. 6.
    Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 985–1002 (2008)CrossRefGoogle Scholar
  7. 7.
    Jing, Y., Baluja, S.: Pagerank for product image search. In: ACM WWW 2008, pp. 307–316 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yunhee Shin
    • 1
  • Eun Yi Kim
    • 2
  • Tae-Eung Sung
    • 3
  1. 1.Department of Patent Valuation & LicensingKorea Invention Promotion AssociationKorea
  2. 2.Visual Information Processing Lab.Konkuk UniversityKorea
  3. 3.Department of Technology Commercialization InformationKorea Institute of Science and Technology InformationKorea

Personalised recommendations