Advertisement

Semantic Annotation Method of Clothing Image

  • Lu Zhaolao
  • Mingquan Zhou
  • Wang Xuesong
  • Fu Yan
  • Tan Xiaohui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8008)

Abstract

Semantic annotation is an essential issue for image retrieval. In this paper, we take the online clothing product images as sample. In order to annotate images. we first segment the image into regions, then remove the background and noise information. The illumination and light interference is considered too. Cloth position and region are determined by rules. Images are translated into some features. Visual words are prepared by human and calculate methods. Finally, Image features are mapped to different visual words. Pre-processing and post-processing steps which uses face recognition method and background rule analysis are applied. Finally, some segmentation and annotation results are given to discuss the method.

Keywords

Semantic annotation Image segmentation Graph cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mori, Y., Takahashi, H., Oka, R.: Image-to- word transformation based on dividing and vector quantizing images with words. In: Proc. of Intl. Workshop on Multimedia Intelligent Storage and Retrieval Management (MISRM 1999), Orlando (October 1999)Google Scholar
  2. 2.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Compute Vision 42(3), 145–175 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hare, J.S., Lewis, P.H.: Saliency-based models of image content and their application to auto-annotation by semantic propagation. In: Proceedings of the Second European Semantic Web Conference (ESWC 2005), Heraklion, Crete (May 2005)Google Scholar
  4. 4.
    Yavlinsky, A., Schofield, E., Rüger, S.M.: Automated Image Annotation Using Global Features and Robust Nonparametric Density Estimation. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 507–517. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In: Proc. of Advances in Neural Information Processing Systems ( NIPS 2003) (2003)Google Scholar
  6. 6.
    Yang, C., Dong, M., Hua, J.: Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2006), New York, USA, pp. 2057–2063 (June 2006)Google Scholar
  7. 7.
    Feng, S.-H., Xu, D.: Transductive Multi Instance Multi Lab el Learning Algorithm with Application to Automatic Image Annotation. Expert Systems with Applications 37(1), 661–670 (2010)CrossRefGoogle Scholar
  8. 8.
    Lu, H., Zheng, Y.-B., Xue, X.-Y., et al.: Content and context-based multi label image annotation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Works hops. Miami, FL, USA, pp. 61–68 (2009)Google Scholar
  9. 9.
    Liu, J., Li, M., Liu, Q., et al.: Image annotation via graph learning. Pattern Recognition 42(2), 218–228 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Wang, Y., Mei, T., Gong, S.G., et al.: Combining global, regional and con textual features for automat ic image annotation. Pattern Recognition 42(2), 259–266 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Noble, J.A., Boukerroui, D.: Ultrasound Image Segmentation: A Survey. IEEE Transactions on Medical Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  12. 12.
    Luccheseyz, L., Mitray, S.K.: Color Image Segmentation: A State-of-the-Art Survey. Image Processing, Vision, and Pattern Recognition 67(2), 207–221 (2001)Google Scholar
  13. 13.
    Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 750–755 (1997)Google Scholar
  14. 14.
    Urquhart, R.: Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition 15(3), 173–187 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 731–737 (1997)Google Scholar
  16. 16.
    Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering:Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)CrossRefGoogle Scholar
  17. 17.
    Weiss, Y.: Segmentation using Eigenvectors: A Unifying View. In: Proceedings of the IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, pp. 975–982 (1999)Google Scholar
  18. 18.
    Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, pp. 1197–1203 (1999)Google Scholar
  19. 19.
    Ng, H.-F.: Automatic thresholding for defect detection. Pattern Recognition Letters 27(14), 1644–1649 (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y.J., Gerbrands, J.J.: Transition region determination based thresholding. Pattern Recognition Letters 12(1), 13–23 (1991)CrossRefGoogle Scholar
  21. 21.
    Osher, S., Sethian, J.A.: Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations. Journal of Computational Physics 79(1), 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Adalsteinsson, B., Sethian, J.A.: The fast construction of extension velocities in level set methods. Journal of Computational Physics 148(1), 2–22 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  24. 24.
    Li, P.-H., Zhang, T.-W.: Review on active contour model (Snakemodel). Journal of Software 11(6), 751–757 (2000)Google Scholar
  25. 25.
    Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: Proc. IEEE Conf. Computer Vision, Vancouver, Canada, vol. 1, pp. 105–112 (2001)Google Scholar
  26. 26.
    Zahn, C.T.: Graph-theoretic methods for detecting and describing gestalt clusters. IEEE Transactions on Computing 20(1), 68–86 (1971)zbMATHCrossRefGoogle Scholar
  27. 27.
    Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)CrossRefGoogle Scholar
  28. 28.
    Shi, J., Malik, J.: Normalizaed Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  29. 29.
    Grady, L., Schwartz, E.L.: Isoperimetric Graph Partitioning for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 469–475 (2006)CrossRefGoogle Scholar
  30. 30.
    Felzenszwalb, P., Huttenlocher, D.: Image segmentation using local variation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, USA, pp. 98–104 (1998)Google Scholar
  31. 31.
    Felzenszwalb, P.: Effcient Graph-Based Image Segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  32. 32.
    Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  33. 33.
    Cooper, M.C.: The tractability of segmentation and scene analysis. International Journal of Computer Vision 30(1), 27–42 (1998)CrossRefGoogle Scholar
  34. 34.
    Sarkar, S., Soundararajan, P.: Supervised learning of large perceptual organization:graph spectral and learning automata. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(5), 504–525 (2000)CrossRefGoogle Scholar
  35. 35.
    Ding, C.H.Q., He, X., Zha, H., et al.: A min-max cut algorithm for graph partitioning and data clustering. In: ICDM 2001, pp. 107–114. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  36. 36.
    Li, X.-B., Tian, Z., Liu, M.-G.: Weighted Cut Based Image Segmentation. Acta Electronica Sinica 36(1), 76–80 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lu Zhaolao
    • 1
  • Mingquan Zhou
    • 1
  • Wang Xuesong
    • 1
  • Fu Yan
    • 1
  • Tan Xiaohui
    • 1
  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations