Advertisement

Classification Based on LBP and SVM for Human Embryo Microscope Images

  • Yabo Yin
  • Yun Tian
  • Weizhong Wang
  • Fuqing Duan
  • Zhongke Wu
  • Mingquan Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8008)

Abstract

Embryo transfer is an extremely important step in the process of in- vitro fertilization and embryo transfer (IVF-ET). The identification of the embryo with the greatest potential for producing a child is a very big challenge faced by embryologists. Most current scoring systems of assessing embryo viability are based on doctors’ subjective visual analysis of the embryos’ morphological features. So it provides only a very rough guide to potential. A classifier as a computer-aided method which is based on Pattern Recognition can help to automatically and accurately select embryos. This paper presents a classifier based on the support vector machine (SVM) algorithm. Key characteristics are formulated by using the local binary pattern (LBP) algorithm, which can eliminate the inter-observer variation, thus adding objectivity to the selection process. The experiment is done with 185 embryo images, including 47 “good” and 138 “bad” embryo images. The result shows our proposed method is robust and accurate, and the accurate rate of classification can reach about 80.42%.

Keywords

embryo microscope images feature extraction automatic classifier local vector pattern support vector machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santos Filho, E., Noble, J.A., Wells, D.: A Review on Automatic Analysis of Human Embryo Microscope Images. Open Biomed. Eng. J. 4, 170–177 (2010)CrossRefGoogle Scholar
  2. 2.
    Santos Filho, E., Noble, J.A., Wells, D.: Toward a Method for Automatic Grading of Microscope Human Embryo Images. In: IEEE International Symposium on Biomedical Imaging, pp. 1289–1292 (2010)Google Scholar
  3. 3.
    Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward Automatic Phenotyping of Developing Embryos fromVideos. IEEE Trans. Image Process 14(9), 1360–1371 (2005)CrossRefGoogle Scholar
  4. 4.
    Siristatidis, C., Pouliakis, A., Chrelias, C., Kassanos, D.: Artificial Intelligence in IVF: A Need. Syst. Biol. Reprod. Med. 57(4), 179–185 (2011)CrossRefGoogle Scholar
  5. 5.
    Patrizi, G., Manna, C., Moscatelli, C., Nieddu, L.: Pattern Recognition Methods in Human-assisted Reproduction. Int. Trans. Oper. Res. 11(4), 365–379 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Morales, D.A., Bengoetxea, E., Larranaga, P., et al.: Bayesian Classification for the Selection of in Vitro Human Embryos Using Morphological and Clinical Data. Comput. Meth. Prog. Bio. 90(2), 104–116 (2008)CrossRefGoogle Scholar
  7. 7.
    Behdad, M., French, T., Barone, L., Bennamoun, M.: PCA for Improving the Performance of XCSR in Classification of High-dimensional Problems. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 361–368 (2011)Google Scholar
  8. 8.
    Kobayashi, H., Zhao, Q.F.: Face Detection Based on LDA and NN. In: Proceedings of the 2007 Japan-China Joint Workshop on Frontier of Computer Science and Technology, pp. 146–154 (2007)Google Scholar
  9. 9.
    Morales, D.A., Bengoetxea, E., Larrabaga, P.: Selection of Human Embryos for Transfer by Bayesian Classifiers. Comput. Biol. Med. 38(11), 1177–1186 (2008)CrossRefGoogle Scholar
  10. 10.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Kou, H.Z., Gardarin, G.: Study of Category Score Algorithms for K-NN Classifier. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 393–394 (2002)Google Scholar
  12. 12.
    Christopher, J., Burges, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  13. 13.
    Wan, H.L., Chowdhury, M.: Image Semantic Classification by Using SVM. JSW 14(11), 1891–1899 (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yabo Yin
    • 1
  • Yun Tian
    • 1
  • Weizhong Wang
    • 2
  • Fuqing Duan
    • 1
  • Zhongke Wu
    • 1
  • Mingquan Zhou
    • 1
  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina
  2. 2.Reproductive Medicine CenterNavy General Hospital, PLABeijingChina

Personalised recommendations