Unifying Conceptual and Spatial Relationships between Objects in HCI

  • David Blezinger
  • Ava Fatah gen. Schieck
  • Christoph Hölscher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8008)


To design interfaces which occupy a continuous space of interaction, the conceptual model of an interface needs to be transferred to a spatial model. To find mappings between conceptual and spatial structure which are natural to people, an experiment is undertaken in which participants organize objects in a semi-circle of shelves around their body. It is analyzed how conceptual relationships between objects such as categorial relationships and sequential relationships within task performance are represented in spatial configurations of objects as chosen by the participants. In these configurations, a strong correlation between conceptual and spatial relationships is observed between objects.


HCI frameworks spatial interface conceptual model information architecture navigation object-based task-based spatial configuration spatial cognition embodied interaction categories visual identity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck, A., Janssen, C., Weisbecker, A., Ziegler, J.: Integrating Object-Oriented Analysis and Graphical User Interface Design. Fraunhofer-Institut für Arbeitswirtschaft und Organisation (1993)Google Scholar
  2. 2.
    Allen, J., Chudley, J.: Smashing UX Design. John Wiley & Sons, Chichester (2012)Google Scholar
  3. 3.
    John, B.E., Kieras, D.E.: Using GOMS for User Interface Design and Evaluation: Which Technique? ACM Transactions on Computer-Human Interaction 3(4), 287–319 (1996)CrossRefGoogle Scholar
  4. 4.
    Hornecker, E., Buur, J.: Getting a grip on Tangible Interaction: A Framework on Physical Space and Social Interaction. In: CHI 2006, Montreal, Québec, Canada, April 22-28 (2006)Google Scholar
  5. 5.
    Ullmer, B., Ishii, H.: Emerging Frameworks for tangible user interfaces. IBM Systems Journal 39(3-4), 915–931 (2000)CrossRefGoogle Scholar
  6. 6.
    Burgess, C.: From simple associations to the building blocks of language. Behavior Research Methods. Instruments & Computers 30(2), 188–198 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods. Instruments & Computers 28(2), 203–208 (1996)CrossRefGoogle Scholar
  8. 8.
    Kalff, C., Strube, G.: Everyday navigation in Real and Virtual Environments Informed by Semantic Knowledge. In: Carlson, L., Hoelscher, C., Shipley, T.F. (eds.) Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin (2011)Google Scholar
  9. 9.
    Fatah gen. Schieck, A., Moutinhou, A.: ArCHI - Engaging with museum objects spatially through whole body movement. In: Academic MindTrek 2012: International Conference on Media of the Future, Tampere, Finland (2012)Google Scholar
  10. 10.
    Sharlin, E., Watson, B., Kitamura, Y., Kishino, F., Itoh, Y.: On tangible user interfaces, humans and spatiality. Personal and Ubiquitous Computing 8(5), 338–346 (2004)CrossRefGoogle Scholar
  11. 11.
    Robbins, P., Aydede, M.: The Cambridge Handbook of Situated Cognition. Cambridge University Press, Cambridge (2009)Google Scholar
  12. 12.
    Laban, R.: Choreutics. Jarrold and Sons Limited, Norwich (1966)Google Scholar
  13. 13.
    Tversky, B., Morrison, J.B., Franklin, N., Bryant, D.J.: Three Spaces of Spatial Cognition. Professional Geographer 51(4), 516–524 (1999)CrossRefGoogle Scholar
  14. 14.
    Vingerhoets, G., Vandamme, K., Vercammen, A.: Conceptual and physical object qualities contribute differently to motor affordances. Brain and Cognition 69, 481–489 (2008)CrossRefGoogle Scholar
  15. 15.
    Beach, K.: Becoming a Bartender: The Role of External Memory Cues in a Work-directed Educational Activity. Applied Cognitive Psychology 7, 191–204 (1993)CrossRefGoogle Scholar
  16. 16.
    Fatah gen. Schieck, A.: Embodied, mediated and performative: Exploring the architectural education in the digital age. In: Voyatzaki, M., Spiridonidis, C. (eds.) Rethinking the Human in Technology-driven Architecture. Transactions on Architectural Education, vol. (55) (2012)Google Scholar
  17. 17.
    Gibson, J.J.: The ecological approach to visual perception. Psychology Press, New York (1986)Google Scholar
  18. 18.
    Moggridge, B.: Designing Interactions. The MIT Press, Cambridge (2006)Google Scholar
  19. 19.
    Norman, D.A.: Affordance, Conventions, and Design. Interactions (May-June 1999)Google Scholar
  20. 20.
    Dourish, P.: Where the Action is. The MIT Press, Cambridge (2001)Google Scholar
  21. 21.
    Hardiess, G., Gillner, S., Mallot, A.: Head and eye movements and the role of memory limitations in a visual search paradigm. Journal of Vision 8(1), 7, 1–13 (2008)Google Scholar
  22. 22.
    Hardiess, G., Basten, K., Mallot, H.A.: Acquisition vs. Memorization Trade-Offs Are Modulated by Walking Distance and Pattern Complexity in a Large-Scale Copying Paradigm. PLoS ONE 6(4) (2011)Google Scholar
  23. 23.
    Hillier, B.: The Social Logic of Space. Cambridge University Press, New York (1984)CrossRefGoogle Scholar
  24. 24.
    Derry, S.J.: Cognitive Schema Theory in the Constructivist Debate. Educational Psychologist 31(3/4), 163–174 (1996)Google Scholar
  25. 25.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory & Cognition 13(3), 208–217 (1985)CrossRefGoogle Scholar
  26. 26.
    Jameson, A.: Adaptive Interfaces and Agents. DFKI, German Research Center for Artificial Intelligence (2008)Google Scholar
  27. 27.
    Kuhn, G.: Die “Frankfurter Küche”. Bonn: Wohnkultur und kommunale Wohnungspolitik in Frankfurt am Main 1880-1930, 142–176 (1998)Google Scholar
  28. 28.
    Penn, A.: Space Syntax and Spatial Cognition. Environment and Behaviour 35(1), 30–65 (2003)CrossRefGoogle Scholar
  29. 29.
    Pirolli, P., Card, S.K.: Information foraging. Psychological Review 106, 643–675 (1999)CrossRefGoogle Scholar
  30. 30.
    Tversky, B.: Cognitive Maps, Cognitive Collages, and Spatial Mental Models. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 14–24. Springer, Heidelberg (1993)Google Scholar
  31. 31.
    Zacks, J.M., Tversky, B.: Event Structure in Perception and Conception. Psychological Bulletin 127(1), 3–21 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Blezinger
    • 1
  • Ava Fatah gen. Schieck
    • 1
  • Christoph Hölscher
    • 2
  1. 1.Bartlett School of Graduate StudiesLondonUK
  2. 2.Center for Cognitive Science, Institute for Computer Science and Social ResearchFreiburgGermany

Personalised recommendations