Skip to main content

Major Plant Pathogens of the Magnaporthaceae Family

Part of the Soil Biology book series (SOILBIOL,volume 36)

Abstract

The Magnaporthaceae family includes fungal species that cause devastating diseases on cereals and grasses. The causal agent of take-all disease of wheat Gaeumannomyces graminis, the rice blast fungus Magnaporthe oryzae, and Magnaporthe poae which causes the grey leaf spot on turfgrasses, belong to this family. M. poae and G. graminis are considered root pathogens, whereas M. oryzae is found on aerial plant tissues. Remarkably, M. oryzae can also infect roots and distinct mechanisms control its root infection ability compared to leaf colonisation. Since G. graminis and M. poae are genetically intractable, M. oryzae underground infection process can be used to dissect genetic pathways and molecular mechanisms underlying root infection in other members of Magnaporthaceae. Interestingly, M. oryzae root infection process also shares similarities with ancient mycorrhizal associations. Here, we highlight the latest advances on the mechanisms regulating pathogenicity in these economically significant plant pathogens.

Keywords

  • Germ Tube
  • Rice Blast
  • Carbon Catabolite Repression
  • Grey Leaf Spot
  • Rice Blast Fungus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39339-6_4
  • Chapter length: 44 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39339-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4

References

  • Adams TH, Boylan MT, Timberlake WE (1988) BrlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

    PubMed  CAS  CrossRef  Google Scholar 

  • Ahn N, Kim S, Choi W, Im KH, Lee YH (2004) Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol Cells 17:166–173

    PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    PubMed  CAS  CrossRef  Google Scholar 

  • Arx JA, Olivier DL (1952) The taxonomy of Ophiobolus graminis Sacc. Trans Br Mycol Soc 35:29–33

    CrossRef  Google Scholar 

  • Asher MC, Shipton PJ (1981) Biology and control of take-all. Academic, London

    Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer pikm-specific rice blast resistance. Genetics 180:2267–2276

    PubMed  CAS  CrossRef  Google Scholar 

  • Bae CY, Kim S, Choi WB, Lee YH (2007) Involvement of extracellular matrix and integrin-like proteins on conidial adhesion and appressorium differentiation in Magnaporthe oryzae. J Microbiol Biotechnol 17:1198–1203

    PubMed  CAS  Google Scholar 

  • Balhadere PV, Talbot NJ (2001) PDE1 encodes a P-Type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 13:1987–2004

    PubMed  CAS  Google Scholar 

  • Balhadere PV, Foster AJ, Talbot NJ (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact 12:129–142

    CAS  CrossRef  Google Scholar 

  • Ballini E, Morel J-B, Droc G, Price A, Courtois B, Nottéghem J-L, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    PubMed  CAS  CrossRef  Google Scholar 

  • Bateman GL, Ward E, Antoniw JF (1992) Identification of Gaeumannomyces graminis var. tritici and G. graminis var. avenae using a DNA probe and nonmolecular methods. Mycol Res 96:737–742

    CrossRef  Google Scholar 

  • Beckerman JL, Ebbole DJ (1996) MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact 9:450–456

    PubMed  CAS  CrossRef  Google Scholar 

  • Bell K, Oparka K (2011) Imaging plasmodesmata. Protoplasma 248:9–25

    PubMed  CrossRef  Google Scholar 

  • Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–188

    CAS  CrossRef  Google Scholar 

  • Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147

    PubMed  CAS  CrossRef  Google Scholar 

  • Besi M, Tucker SL, Sesma A (2009) Magnaporthe and its relatives. Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Betts MF, Tucker SL, Galadima N et al (2007) Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol 44:1035–1049

    PubMed  CAS  CrossRef  Google Scholar 

  • Borromeo ES, Nelson RJ, Bonman JM, Leung H (1993) Genetic differentiation among isolates of Pyricularia infecting rice and weed hosts. Phytopathology 83:393

    CAS  CrossRef  Google Scholar 

  • Bourett TM, Howard RJ (1990) In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J Bot 68:329–342

    CrossRef  Google Scholar 

  • Bourett TM, Howard RJ (1992) Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma 168:20–26

    CAS  CrossRef  Google Scholar 

  • Bowyer P, Clarke BR, Lunness P, Daniels MJ, Osbourn AE (1995) Host-range of a plant-pathogenic fungus determined by a saponin detoxifying enzyme. Science 267:371–374

    PubMed  CAS  CrossRef  Google Scholar 

  • Bryan GT, Daniels MJ, Osbourn AE (1995) Comparison of fungi within the Gaeumannomyces-Phialophora complex by analysis of ribosomal DNA sequences. Appl Environ Microbiol 61:681

    PubMed  CAS  Google Scholar 

  • Bryan GT, Wu K-S, Farrall L et al (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046

    PubMed  CAS  Google Scholar 

  • Bussaban B, Lumyong S, Lumyong P, Hyde KD, McKenzie EHC (2001) Two new species of endophytes (ascomycetes) from Zingiberaceae sporulating in culture. Nova Hedwigia 73:487–493

    Google Scholar 

  • Cannon PF (1994) The newly recognized family Magnaporthaceae and its interrelationships. Syst Ascomycetum 13:25–42

    Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CABI, Wallingford

    Google Scholar 

  • Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94:1017–1031

    PubMed  CAS  CrossRef  Google Scholar 

  • Cavara F (1892) Pyricularia oryzae. Fungi Longobardiae exsiccati 2, 49

    Google Scholar 

  • Chen X, Ronald PC (2011) Innate immunity in rice. Trends Plant Sci 16:451–459

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen X, Shang J, Chen D et al (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen J, Zheng W, Zheng S, Zhang D, Sang W, Chen X, Li G, Lu G, Wang Z (2008) Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. PLoS Pathog 4:e1000202

    PubMed  CrossRef  CAS  Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    PubMed  CAS  Google Scholar 

  • Chuma I, Shinogi T, Hosogi N, Ikeda K, Nakayashiki H, Park P, Tosa Y (2009) Cytological characteristics of microconidia of Magnaporthe oryzae. J Gen Plant Pathol 75:353–358

    CrossRef  Google Scholar 

  • Chuma I, Isobe C, Hotta Y et al (2011) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7(7):e1002147

    PubMed  CAS  CrossRef  Google Scholar 

  • Chumley FG, Valent B (1990) Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143

    CAS  CrossRef  Google Scholar 

  • Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968

    PubMed  CAS  CrossRef  Google Scholar 

  • Coleman JJ, Mylonakis E (2009) Efflux in fungi: la piece de resistance. PLoS Pathog 5

    Google Scholar 

  • Collemare J, Pianfetti M, Houlle AE et al (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol 179:196–208

    PubMed  CAS  CrossRef  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    PubMed  CAS  CrossRef  Google Scholar 

  • Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, van Kim P, Notteghem JL, Kohn LM (2005) Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630

    PubMed  CAS  CrossRef  Google Scholar 

  • Crombie L, Crombie WML, Whiting DA (1984) Isolation of avenacins A-1, A-2, B-1, B-2 from oat roots: structures of their “aglycones”, the avenestergenins. J Chem Soc Chem Comm 4:244–246

    CrossRef  Google Scholar 

  • Crombie WML, Crombie L, Green JB, Lucas JA (1986) Pathogenicity of “take-all” fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 9:2075–2083

    CrossRef  Google Scholar 

  • Cruz CD, Bockus WW, Stack JP, Tang XY, Valent B, Pedley KF, Peterson GL (2012) Preliminary assessment of resistance among U.S. Wheat cultivars to the triticum pathotype of Magnaporthe oryzae. Plant Dis 96:1501–1505

    CrossRef  Google Scholar 

  • Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, Talbot NJ (2012) Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590–1595

    PubMed  CAS  CrossRef  Google Scholar 

  • De Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245

    CrossRef  CAS  Google Scholar 

  • Dean RA (1997) Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol 35:211–234

    PubMed  CAS  CrossRef  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    PubMed  CAS  CrossRef  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  CrossRef  Google Scholar 

  • Dennis RWG (1960) British cup fungi and their allies: an introduction to the Ascomycetes. Ray Society, London

    Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    PubMed  CAS  Google Scholar 

  • Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058

    PubMed  CAS  Google Scholar 

  • Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43:605–617

    PubMed  CAS  CrossRef  Google Scholar 

  • Dori S, Solel Z, Barash I (1995) Cell wall-degrading enzymes produced by Gaeumannomyces graminis var. tritici in vitro and in vivo. Physiol Mol Plant Pathol 46:189–198

    CAS  CrossRef  Google Scholar 

  • Dufresne M, Osbourn AE (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant Microbe Interact 14:300–307

    PubMed  CAS  CrossRef  Google Scholar 

  • Etxebeste O, Garzia A, Espeso EA, Ugalde U (2010) Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18:569–576

    PubMed  CAS  CrossRef  Google Scholar 

  • Fang EGC, Dean RA (2000) Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant Microbe Interact 13:1214–1227

    PubMed  CAS  CrossRef  Google Scholar 

  • FAO (Food and Agriculture Organization) of the United Nations (2009) The state of food insecurity in the world economic crises – impacts and lessons learned. http://www.fao.org/docrep/012/i0876e/i0876e00.htm

  • Fernandez J, Wilson RA (2012) Why no feeding frenzy? mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 25:1286–1293

    PubMed  CAS  CrossRef  Google Scholar 

  • Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA (2012) Principles of carbon catabolite repression in the rice blast fungus: Tps, 1, Nmr1–3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 8:e1002673

    PubMed  CAS  CrossRef  Google Scholar 

  • Field B, Jordan F, Osbourn A (2006) First encounters – deployment of defence-related natural products by plants. New Phytol 172:193–207

    PubMed  CAS  CrossRef  Google Scholar 

  • Franceschetti M, Bueno E, Wilson RA, Tucker SL, Gómez-Mena C, Calder G, Sesma A (2011) Fungal virulence and development is regulated by alternative pre-mRNA 3′ end processing in Magnaporthe oryzae. PLoS Pathog 7:e1002441

    PubMed  CAS  CrossRef  Google Scholar 

  • Frederick BA, Caesar-Tonthat TC, Wheeler MH, Sheehan KB, Edens WA, Henson JM (1999) Isolation and characterisation of Gaeumannomyces graminis var. graminis melanin mutants. Mycol Res 103:99–110

    CAS  CrossRef  Google Scholar 

  • Freeman J, Ward E (2004) Gaeumannomyces graminis, the take-all fungus and its relatives. Mol Plant Pathol 5:235–252

    PubMed  CAS  CrossRef  Google Scholar 

  • Froeliger EH, Carpenter BE (1996) NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 251:647–656

    PubMed  CAS  Google Scholar 

  • Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    CrossRef  Google Scholar 

  • Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    CAS  CrossRef  Google Scholar 

  • Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH (2007) Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot Cell 6:546–554

    PubMed  CAS  CrossRef  Google Scholar 

  • Fukumori Y, Nakajima M, Akutsu K (2004) Microconidia act the role as spermatia in the sexual reproduction of Botrytis cinerea. J Gen Plant Pathol 70:256–260

    CrossRef  Google Scholar 

  • Fukuoka S, Saka N, Koga H et al (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    PubMed  CAS  CrossRef  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788

    PubMed  CAS  CrossRef  Google Scholar 

  • Gangopadhyay S, Row KVK (1986) Perennation of Pyricularia oryzae briosi et cav. in sclerotial state. Int J Trop Plant Dis 4:187–192

    Google Scholar 

  • Gilbert MJ, Thornton CR, Wakley GE, Talbot NJ (2006) A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440:535–539

    PubMed  CAS  CrossRef  Google Scholar 

  • Gladfelter AS (2006) Control of filamentous fungal cell shape by septins and formins. Nat Rev Microbiol 4:223–229

    PubMed  CAS  CrossRef  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Goh J, Kim KS, Park J, Jeon J, Park SY, Lee YH (2011) The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae. Fungal Genet Biol 48:784–792

    PubMed  CAS  CrossRef  Google Scholar 

  • Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801

    PubMed  CAS  CrossRef  Google Scholar 

  • Guimil S, Chang HS, Zhu T et al (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    PubMed  CrossRef  CAS  Google Scholar 

  • Gupta A, Chattoo BB (2008) Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea. FEMS Microbiol Lett 278:22–28

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamer JE, Howard RJ, Chumley F, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamer JE, Valent B, Chumley FG (1989) Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics 122:351–361

    PubMed  CAS  Google Scholar 

  • Harmon PF, Latin R (2005) Winter survival of the perennial ryegrass pathogen Magnaporthe oryzae in north central Indiana. Plant Dis 89:412–418

    CrossRef  Google Scholar 

  • Harmon PF, Dunkle LD, Latin R (2003) A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis 87:1072–1076

    CAS  CrossRef  Google Scholar 

  • Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20

    CrossRef  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    PubMed  CAS  CrossRef  Google Scholar 

  • Hayashi N, Inoue H, Kato T et al (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510

    PubMed  CAS  CrossRef  Google Scholar 

  • Heath MC, Valent B, Howard RJ, Chumley FG (1992) Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Can J Bot 70:779–787

    CrossRef  Google Scholar 

  • Hebert TT (1971) Perfect stage of Pyricularia grisea. Phytopathology 61:83–87

    CrossRef  Google Scholar 

  • Henson JM (1992) DNA hybridization and polymerase chain-reaction (Pcr) tests for identification of Gaeumannomyces, Phialophora and Magnaporthe isolates. Mycol Res 96:629–636

    CAS  CrossRef  Google Scholar 

  • Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471

    PubMed  CAS  CrossRef  Google Scholar 

  • Heupel S, Roser B, Kuhn H, Lebrun MH, Villalba F, Requena N (2010) Erl1, a novel era-like GTPase from Magnaporthe oryzae, is required for full root virulence and is conserved in the mutualistic symbiont glomus intraradices. Mol Plant Microbe Interact 23:67–81

    PubMed  CAS  CrossRef  Google Scholar 

  • Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122

    PubMed  CAS  CrossRef  Google Scholar 

  • Hornby D (1998) Take-all disease of cereals: a regional perspective. CAB International, Wallingford

    Google Scholar 

  • Hornby D, Slope DB, Gutteridge RJ, Sivanesan A (1977) Gaeumannomyces-cylindrosporus, a new ascomycete from cereal roots. Trans Br Mycol Soc 69:21–25

    CrossRef  Google Scholar 

  • Howard RJ (1997) Breaching the outer barrier – cuticle and cell wall penetration. In: Carroll PTGC (ed) The Mycota V plant relationships, Part A. Springer, Berlin, pp 43–60

    CrossRef  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    PubMed  CAS  CrossRef  Google Scholar 

  • Howard R, Ferrari M, Roach D, Money N (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    PubMed  CAS  CrossRef  Google Scholar 

  • Hua LX, Wu JZ, Chen CX et al (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    PubMed  CAS  CrossRef  Google Scholar 

  • Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:615–626

    CAS  CrossRef  Google Scholar 

  • Ikeda KI, Nakayashiki H, Kataoka T, Tamba H, Hashimoto Y, Tosa Y, Mayama S (2002) Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol Microbiol 45:1355–1364

    PubMed  CAS  CrossRef  Google Scholar 

  • Inoue I, Namiki F, Tsuge T (2002) Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 14:1869–1883

    PubMed  CAS  CrossRef  Google Scholar 

  • Inoue K, Suzuki T, Ikeda K, Jiang S, Hosogi N, Hyong G-S, Hida S, Yamada T, Park P (2007) Extracellular matrix of Magnaporthe oryzae may have a role in host adhesion during fungal penetration and is digested by matrix metalloproteinases. J Gen Plant Pathol 73:388–398

    CrossRef  Google Scholar 

  • Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S (2007) Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 39:561–565

    PubMed  CAS  CrossRef  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    PubMed  CAS  CrossRef  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  CrossRef  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Kang S, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 8:939–948

    PubMed  CAS  CrossRef  Google Scholar 

  • Kang S, Lebrun MH, Farrall L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact 14:671–674

    PubMed  CAS  CrossRef  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    PubMed  CAS  CrossRef  Google Scholar 

  • Kato H, Mayama S, Sekine R, Kanazawa E, Izutani Y, Urashima A, Kunoh H (1994) Microconidium formation in Magnaporthe grisea. Ann Phytopathol Soc Jpn 60:175–185

    CrossRef  Google Scholar 

  • Kershaw MJ, Wakley G, Talbot NJ (1998) Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849

    PubMed  CAS  CrossRef  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim KS, Lee YH (2012) Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS One 7

    Google Scholar 

  • Kim S, Ahn IP, Rho HS, Lee YH (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57:1224–1237

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim S, Park SY, Kim KS et al (2009) Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 5(12):e1000757

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim C, Ye F, Ginsberg MH (2011a) Regulation of integrin activation. Annu Rev Cell Dev Biol 27:321–345

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim S, Singh P, Park J, Park S, Friedman A, Zheng T, Lee YH, Lee K (2011b) Genetic and molecular characterization of a blue light photoreceptor MGWC-1 in Magnaporthe oryzae. Fungal Genet Biol 48:400–407

    PubMed  CAS  CrossRef  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and bisby’s dictionary of the fungi, 9th edn. CABI, Wallingford

    Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohlmeyer J, Volkmannkohlmeyer B (1995) Fungi on Juncus roemerianus.1. Trichocladium medullare sp. nov. Mycotaxon 53:349–353

    Google Scholar 

  • Kolattukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23:223–250

    CAS  CrossRef  Google Scholar 

  • Kulkarni RD, Thon MR, Pan H, Dean RA (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24

    PubMed  CrossRef  Google Scholar 

  • Kumar J, Nelson RJ, Zeigler RS (1999) Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics 152:971–984

    PubMed  CAS  Google Scholar 

  • Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219

    PubMed  CAS  CrossRef  Google Scholar 

  • Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun M-H, Silar P (2008) The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 7:1809–1818

    PubMed  CAS  CrossRef  Google Scholar 

  • Landschoot PJ, Jackson N (1989a) Magnaporthe poae sp. nov., a hyphopodiate fungus with a Phialophora anamorph from grass roots in the United States. Mycol Res 93:59–62

    CrossRef  Google Scholar 

  • Landschoot PJ, Jackson N (1989b) Gaeumannomyces incrustans sp. nov., a root-infecting hyphopodiate fungus from grass roots in the United States. Mycol Res 93:55–58

    CrossRef  Google Scholar 

  • Lau G, Hamer JE (1996) Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell 8:771–781

    PubMed  CAS  Google Scholar 

  • Lau GW, Hamer JE (1998) Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol 24:228–239

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee FN, Jackson MA, Walker NR (2000) Characteristics of Pyricularia grisea “microsclerotia” produced in shaked culture. In: Norman RJ, Beyrouty CA (eds) BR wells rice research studies 1999. University of Arkansas, Fayetteville, AR, pp 475–479

    Google Scholar 

  • Lee K, Singh P, Chung WC, Ash J, Kim TS, Hang L, Park S (2006) Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 43:694–706

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee SK, Song MY, Seo YS et al (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–1638

    PubMed  CAS  CrossRef  Google Scholar 

  • Leung H, Borromeo E, Bernardo M, Notteghem JL (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78:1227–1233

    CrossRef  Google Scholar 

  • Li L, Xue CY, Bruno K, Nishimura M, Xu JR (2004) Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol Plant Microbe Interact 17:547–556

    PubMed  CAS  CrossRef  Google Scholar 

  • Li L, Ding SL, Sharon A, Orbach M, Xu JR (2007) Mir1 is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus. Mol Plant Microbe Interact 20:448–458

    PubMed  CAS  CrossRef  Google Scholar 

  • Li W, Wang BH, Wu J et al (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420

    PubMed  CAS  CrossRef  Google Scholar 

  • Li GT, Zhou XY, Kong LG, Wang YL, Zhang H, Zhu H, Mitchell TK, Dean RA, Xu JR (2011) MoSfl1 is important for virulence and heat tolerance in Magnaporthe oryzae. PLoS One 6:e19951

    PubMed  CAS  CrossRef  Google Scholar 

  • Lin F, Chen S, Que ZQ, Wang L, Liu XQ, Pan QH (2007) The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    PubMed  CAS  CrossRef  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    PubMed  CAS  CrossRef  Google Scholar 

  • Litvintseva AP, Henson JM (2002) Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol 68:1305–1311

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu XQ, Lin F, Wang L, Pan QH (2007) The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu JL, Wang XJ, Mitchell T, Hu YJ, Liu XL, Dai LY, Wang GL (2010a) Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol 11:419–427

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu WD, Xie SY, Zhao XH, Chen X, Zheng WH, Lu GD, Xu JR, Wang ZH (2010b) A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23:366–375

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu WD, Zhou XY, Li GT, Li L, Kong LG, Wang CF, Zhang HF, Xu JR (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7

    Google Scholar 

  • Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22:3177–3187

    PubMed  CAS  CrossRef  Google Scholar 

  • Mehrabi R, Ding S, Xu JR (2008) MADS-box transcription factor Mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7:791–799

    PubMed  CAS  CrossRef  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    PubMed  CAS  CrossRef  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50(50):267–294

    PubMed  CAS  CrossRef  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T et al (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335

    PubMed  CAS  CrossRef  Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290

    PubMed  CAS  CrossRef  Google Scholar 

  • Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13:183–194

    PubMed  CAS  Google Scholar 

  • Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68:1348–1365

    PubMed  CAS  CrossRef  Google Scholar 

  • Noguchi MT, Yasuda N, Fujita Y (2006) Evidence of genetic exchange by parasexual recombination and genetic analysis of pathogenicity and mating type of parasexual recombinants in rice blast fungus, Magnaporthe oryzae. Phytopathology 96:746–750

    PubMed  CAS  CrossRef  Google Scholar 

  • Oh Y, Donofrio N, Pan HQ, Coughlan S, Brown DE, Meng SW, Mitchell T, Dean RA (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 9(5):R85

    PubMed  CrossRef  CAS  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A et al (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479

    PubMed  CAS  CrossRef  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Corrochano LM (2010a) Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa. Genetics 184:651–658

    PubMed  CAS  CrossRef  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010b) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47:352–363

    PubMed  CAS  CrossRef  Google Scholar 

  • Osbourn AE, Clarke BR, Lunness P, Scott PR (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol 45:457

    CAS  CrossRef  Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  • Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677

    PubMed  CAS  CrossRef  Google Scholar 

  • Park G, Xue C, Zheng L, Lam S, Xu JR (2002) MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:183–192

    PubMed  CAS  CrossRef  Google Scholar 

  • Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu J-R (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–2835

    PubMed  CAS  CrossRef  Google Scholar 

  • Patkar RN, Xue YK, Shui GH, Wenk MR, Naqvi NI (2012) Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. PLoS Pathog 8:e1002888

    PubMed  CAS  CrossRef  Google Scholar 

  • Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    PubMed  CAS  CrossRef  Google Scholar 

  • Ribot C, Hirsch J, Batzergue S, Tharreau D, Notteghem JL, Lebrun MH, Morel JB (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165:114–124

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Belanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535–546

    PubMed  CAS  CrossRef  Google Scholar 

  • Rossman AY, Howard RJ, Valent B (1990) Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82:509–512

    CrossRef  Google Scholar 

  • Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–U897

    PubMed  CAS  CrossRef  Google Scholar 

  • Saccardo PA (1880) Fungorum extra-europaeorum Pugillus. Michelia 2:136–149

    Google Scholar 

  • Saitoh H, Fujisawa S, Ito A, Mitsuoka C, Berberich T, Tosa Y, Asakura M, Takano Y, Terauchi R (2009) SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae. FEMS Microbiol Lett 300:115–121

    PubMed  CAS  CrossRef  Google Scholar 

  • Saitoh H, Fujisawa S, Mitsuoka C et al (2012) Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog 8(5):e1002711

    PubMed  CAS  CrossRef  Google Scholar 

  • Saleh D, Xu P, Shen Y et al (2012) Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol Ecol 21:1330–1344

    PubMed  CrossRef  Google Scholar 

  • Saunders DG, Dagdas YF, Talbot NJ (2010a) Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2417–2428

    PubMed  CAS  CrossRef  Google Scholar 

  • Saunders DGO, Aves SJ, Talbot NJ (2010b) Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 22:497–507

    PubMed  CAS  CrossRef  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586

    PubMed  CAS  CrossRef  Google Scholar 

  • Shang JJ, Tao Y, Chen XW et al (2009) Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    PubMed  CAS  CrossRef  Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Singh NK (2010) Broad-spectrum blast resistance gene Pi-k(h) cloned from rice line Tetep designated as Pi54. J Plant Biochem Biotechnol 19:87–89

    CAS  CrossRef  Google Scholar 

  • Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    PubMed  CAS  CrossRef  Google Scholar 

  • Shi Z, Christian D, Leung H (1998) Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Mol Plant Microbe Interact 11:199–207

    PubMed  CAS  CrossRef  Google Scholar 

  • Silué D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrun MH (1998) Identification and characterization of apf1 in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Mol Plant Pathol 53:239–251

    CrossRef  Google Scholar 

  • Skamnioti P, Gurr SJ (2007) Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674–2689

    PubMed  CAS  CrossRef  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150

    PubMed  CAS  CrossRef  Google Scholar 

  • Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ (2002) Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:1253–1267

    PubMed  CAS  CrossRef  Google Scholar 

  • Soanes DM, Alam I, Cornell M et al (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3(6):e2300

    PubMed  CrossRef  CAS  Google Scholar 

  • Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514

    PubMed  CAS  CrossRef  Google Scholar 

  • Springer ML, Yanofsky C (1992) Expression of con genes along the three sporulation pathways of Neurospora crassa. Genes Dev 6:1052–1057

    PubMed  CAS  CrossRef  Google Scholar 

  • Sreedhar L, Kobayashi DY, Bunting TE, Hillman BI, Belanger FC (1999) Fungal proteinase expression in the interaction of the plant pathogen Magnaporthe oryzae with its host. Gene 235:121–129

    PubMed  CAS  CrossRef  Google Scholar 

  • Stergiopoulos I, de Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    PubMed  CAS  CrossRef  Google Scholar 

  • Sun CB, Suresh A, Deng YZ, Naqvi NI (2006) A multidrug resistance transporter in magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell 18:3686–3705

    PubMed  CAS  CrossRef  Google Scholar 

  • Sweigard JA, Chumley FG, Valent B (1992) Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet 232:183–190

    PubMed  CAS  Google Scholar 

  • Sweigard JA, Chumley FG, Carroll AM, Farrall L, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233

    PubMed  CAS  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    PubMed  CAS  CrossRef  Google Scholar 

  • Talbot NJ, Kershaw MJ (2009) The emerging role of autophagy in plant pathogen attack and host defence. Curr Opin Plant Biol 12:444–450

    PubMed  CAS  CrossRef  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    PubMed  CAS  Google Scholar 

  • Talbot NJ, Kershaw MJ, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaportha grisea. Plant Cell 8:985–999

    PubMed  CAS  Google Scholar 

  • Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE (1997) Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol Plant Pathol 50:179–198

    CAS  CrossRef  Google Scholar 

  • Tamasloukht M, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    PubMed  CAS  CrossRef  Google Scholar 

  • Tanzer MM, Arst HN, Skalchunes AR, Coffin M, Darveaux BA, Heiniger RW, Shuster JR (2003) Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3:160–170

    PubMed  CAS  CrossRef  Google Scholar 

  • Thines E, Weber RWS, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    PubMed  CAS  Google Scholar 

  • Thinlay X, Finckh MR, Bordeos AC, Zeigler RS (2000) Effects and possible causes of an unprecedented rice blast epidemic on the traditional farming system of Bhutan. Agric Ecosyst Environ 78:237–248

    CrossRef  Google Scholar 

  • Thongkantha S, Jeewon R, Vijaykrishna D, Lumyong S, McKenzie EHC, Hyde KD (2009) Molecular phylogeny of Magnaporthaceae (Sordariomycetes) with a new species Ophioceras chiangdaoense from Dracaena loureiroi in Thailand. Fungal Divers 34:157–173

    Google Scholar 

  • Tredway LP (2006) Genetic relationships among Magnaporthe oryzae isolates from turfgrass hosts and relative susceptibility of “Penncross” and “Penn A-4” creeping bentgrass. Plant Dis 90:1531–1538

    CAS  CrossRef  Google Scholar 

  • Tsurushima T, Don LD, Kawashima K, Murakami J, Nakayashiki H, Tosa Y, Mayama S (2005) Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Mol Plant Pathol 6:605–613

    PubMed  CAS  CrossRef  Google Scholar 

  • Tsurushima T, Minami Y, Miyagawa H, Nakayashiki H, Tosa Y, Mayama S (2010) Induction of chlorosis, ROs generation and cell death by a toxin isolated from Pyricularia oryzae. Biosci Biotechnol Biochem 74:2220–2225

    PubMed  CAS  CrossRef  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–418

    PubMed  CAS  CrossRef  Google Scholar 

  • Tucker SL, Besi MI, Galhano R, Franceschetti M, Goetz S, Lenhert S, Osbourn A, Sesma A (2010) Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. Plant Cell 22:953–972

    PubMed  CAS  CrossRef  Google Scholar 

  • Ulrich K, Augustin C, Werner A (2000) Identification and characterization of a new group of root-colonizing fungi within the Gaeumannomyces-Phialophora complex. New Phytol 145:127–136

    CAS  CrossRef  Google Scholar 

  • Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521

    PubMed  CAS  CrossRef  Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol 29:443–467

    PubMed  CAS  CrossRef  Google Scholar 

  • Valent B, Farrall L, Chumley F (1991) Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87–101

    PubMed  CAS  Google Scholar 

  • Vasilyeva LN (1998) Nizshie Rasteniya, Griby i Mokhoobraznye Dalnego Vostoka Rossii. Pirenomitsety i Lokuloaskomitsety, Sankt Petersburg

    Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580–583

    PubMed  CAS  CrossRef  Google Scholar 

  • Walker J (1972) Type studies on Gaeumannomyces graminis and related fungi. Trans Br Mycol Soc 58:427–457

    CrossRef  Google Scholar 

  • Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129

    Google Scholar 

  • Wang Z-X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    PubMed  CrossRef  Google Scholar 

  • Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47:1601–1612

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci USA 107:21902–21907

    PubMed  CAS  CrossRef  Google Scholar 

  • Wong PTW (2002) Gaeumannomyces wongoonoo sp nov., the cause of a patch disease of buffalo grass (St Augustine grass). Mycol Res 106:857–862

    CrossRef  Google Scholar 

  • Wong PTW, Dong C, Stirling AM, Dickinson ML (2012) Two new Magnaporthe species pathogenic to warm-season turfgrassses in Australia. Australas Plant Pathol 41:321–329

    CAS  CrossRef  Google Scholar 

  • Xiao JZ, Ohshima A, Kamakura T, Ishiyama T (1994) Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea. Mol Plant Microbe Interact 7:639

    CAS  CrossRef  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signalling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    PubMed  CAS  CrossRef  Google Scholar 

  • Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA Gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact 10:187–194

    CAS  CrossRef  Google Scholar 

  • Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718

    PubMed  CAS  CrossRef  Google Scholar 

  • Xue C, Park G, Choi W, Zheng L, Dean RA, Xu J-R (2002) Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14:2107–2119

    PubMed  CAS  CrossRef  Google Scholar 

  • Xue MF, Yang J, Li ZG et al (2012) Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 8(8):e1002869

    PubMed  CrossRef  CAS  Google Scholar 

  • Yang J, Zhao XY, Sun J, Kang ZS, Ding SL, Xu JR, Peng YL (2010) A novel protein com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol Plant Microbe Interact 23:112–123

    PubMed  CAS  CrossRef  Google Scholar 

  • Yao JM, Wang YC, Zhu YG (1992) A new variety of the pathogen of maize take-all. Acta Mycologica Sinica 11:99–104

    Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S et al (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    PubMed  CAS  CrossRef  Google Scholar 

  • You MP, Lanoiselet V, Wang CP, Shivas RG, Li YP, Barbetti MJ (2012) First report of rice blast (Magnaporthe oryzae) on rice (Oryza sativa) in Western Australia. Plant Dis 96:1228–1228

    CrossRef  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    PubMed  CAS  CrossRef  Google Scholar 

  • Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    PubMed  CrossRef  Google Scholar 

  • Zeigler RS (1998) Recombination in Magnaporthe grisea. Annu Rev Phytopathol 36:249–276

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang HF, Liu KY, Zhang X et al (2011a) Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS One 6(2):e17241

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang HF, Xue CY, Kong LG, Li GT, Xu JR (2011b) A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. Eukaryot Cell 10:1062–1070

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang N, Zhao S, Shen QR (2011c) A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 103:1267–1276

    PubMed  CrossRef  Google Scholar 

  • Zhao X, Kim Y, Park G, Xu J-R (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–1329

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhao XH, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701–1714

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhao S, Clarke BB, Shen QR, Zhang LS, Zhang N (2012) Development and application of a TaqMan real-time PCR assay for rapid detection of Magnaporthe oryzae. Mycologia 104:1250–1259

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhou ZZ, Li GH, Lin CH, He CZ (2009) Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact 22:402–410

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhou X, Liu W, Wang C, Xu Q, Wang Y, Ding S, Xu JR (2011) A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol Microbiol 80:33–53

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhou XY, Zhang HF, Li GT, Shaw B, Xu JR (2012) The cyclase-associated protein cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathog 8

    Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ane Sesma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Illana, A., Rodriguez-Romero, J., Sesma, A. (2013). Major Plant Pathogens of the Magnaporthaceae Family. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_4

Download citation