Mathematical Practice, Crowdsourcing, and Social Machines

  • Ursula Martin
  • Alison Pease
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7961)


The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend.

The Study of Mathematical Practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question-answering system mathoverflow contains around 40,000 mathematical conversations, and polymath collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of “soft” aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal.

Crowdsourced mathematical activity is an example of a “social machine”, a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.


Mathematical Practice Mathematical Community Informal Reasoning Global Workspace Social Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences (2011),
  4. 4. (retrieved October 2012)
  5. 5.
    SOCIAM: the theory and practice of social machines,
  6. 6.
  7. 7.
  8. 8.
    Which finite nonabelian groups have long chains of subgroups as intervals in their subgroup lattice? (April 2011),
  9. 9.
    Aberdein, A.: The uses of argument in mathematics. Argumentation 19, 287–301 (2005)CrossRefGoogle Scholar
  10. 10.
    Appel, K., Haken, W.: The solution of the four-color-map problem. Sci. Amer. 237(4), 108–121, 152 (1977)Google Scholar
  11. 11.
    Baars, B.: A cognitive theory of consciousness. Cambridge University Press (1988)Google Scholar
  12. 12.
    Barany, M.J., MacKenzie, D.: Chalk: Materials and concepts in mathematics research. New Representation in Scientific Practice (forthcoming)Google Scholar
  13. 13.
    Bartha, P.: By Parallel Reasoning. Oxford University Press, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Barton, B.: The Language of Mathematics: Telling Mathematical Tales. Mathematics Education Library, vol. 46. Springer (2009)Google Scholar
  15. 15.
    Begel, A., Bosch, J., Storey, M.-A.: Social Networking Meets Software Development: Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder. IEEE Software 30(1), 52–66 (2013)CrossRefGoogle Scholar
  16. 16.
    Berners-Lee, T., Fischetti, M.: Weaving the web - the original design and ultimate destiny of the World Wide Web by its inventor. HarperBusiness (2000)Google Scholar
  17. 17.
    Bourguignon, J.-P.: Mathematicians in France and in the world. L’Explosion des Mathematiques, pp. 92–97. SMF et SMAI (July 2002)Google Scholar
  18. 18.
    Bundy, A.: Automated theorem provers: a practical tool for the working mathematician? Ann. Math. Artif. Intell. 61(1), 3–14 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.): Calculemus/MKM 2009. LNCS, vol. 5625. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  20. 20.
    Carette, J., Farmer, W.M.: A Review of Mathematical Knowledge Management. In: [19], pp. 233–246Google Scholar
  21. 21.
    Cellucci, C., Gillies, D.: Mathematical reasoning and heuristics. King’s College Publications, London (2005)zbMATHGoogle Scholar
  22. 22.
    Charnley, J.: A Global Workspace Framework for Combined Reasoning. PhD thesis, Imperial College, London (2010)Google Scholar
  23. 23.
    Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Mathematical Structures in Computer Science 21(6), 1301–1337 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Colton, S.: Automated Theory Formation in Pure Mathematics. Springer (2002)Google Scholar
  25. 25.
    Colton, S., Muggleton, S.: Mathematical applications of Inductive Logic Programming. Machine Learning 64, 25–64 (2006)zbMATHCrossRefGoogle Scholar
  26. 26.
    Corfield, D.: Assaying Lakatos’s philosophy of mathematics. Studies in History and Philosophy of Science 28(1), 99–121 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Crowley, J., Hezlet, S., Kirby, R., McClure, D.: Mathematics journals: what is valued and what may change. Notices Amer. Math. Soc. 58(8), 1127–1130 (2011); Report on the workshop held at MSRI, Berkeley, CA (February 14-16, 2011)MathSciNetGoogle Scholar
  28. 28.
    DeMillo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems and programs. Commun. ACM 22(5), 271–280 (1979)CrossRefGoogle Scholar
  29. 29.
    Ernest, P.: Social constructivism as a philosophy of mathematics. State University of New York Press, Albany (1997)Google Scholar
  30. 30.
    Giaquinto, M.: Visual Thinking in Mathematics. Clarendon Press, Oxford (2007)zbMATHCrossRefGoogle Scholar
  31. 31.
    Goffman, E.: The presentation of self in everyday life. Doubleday Anchor Books, New York (1959)Google Scholar
  32. 32.
    Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 1–2. ACM (2013)Google Scholar
  33. 33.
    Gowers, T.: Polymath1 and open collaborative mathematics,
  34. 34.
    Gowers, T.: Is massively collaborative mathematics possible? (March 2009),
  35. 35.
    Gowers, T., Nielsen, M.: Massively collaborative mathematics. Nature 461(7266), 879–881 (2009)CrossRefGoogle Scholar
  36. 36.
    Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)Google Scholar
  38. 38.
    Hendler, J., Berners-Lee, T.: From the semantic web to social machines: A research challenge for ai on the world wide web. Artif. Intell. 174(2), 156–161 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hersh, R.: Mathematics has a front and a back. Synthese 88(2), 127–133 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Hume, D.: A treatise of human nature. Penguin Books (1969)Google Scholar
  41. 41.
    Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. Journal of Automated Reasoning (2010) (forthcoming)Google Scholar
  42. 42.
    Jones, C.B.: The early search for tractable ways of reasoning about programs. IEEE Annals of the History of Computing 25(2), 26–49 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Justin Cranshaw, J., Kittur, A.: The polymath project: Lessons from a successful online collaboration in mathematics. In: CHI, Vancouver, BC, Canada, May 7-12 (2011)Google Scholar
  44. 44.
    Kitcher, P.: The Nature of Mathematical Knowledge. Oxford University Press, Oxford (1983)zbMATHGoogle Scholar
  45. 45.
    Kohlhase, M., Rabe, F.: Semantics of OpenMath and MathML3. Mathematics in Computer Science 6(3), 235–260 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)zbMATHCrossRefGoogle Scholar
  47. 47.
    Lakoff, G., Núñez, R.: Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. Basic Books, New York (2000)Google Scholar
  48. 48.
    Larsen, S., Zandieh, M.: Proofs and refutations in the undergraduate mathematics classroom. Educational Studies in Mathematics 67(3), 205–216 (2008)CrossRefGoogle Scholar
  49. 49.
    Larvor, B.: Lakatos: An Introduction. Routledge, London (1998)zbMATHGoogle Scholar
  50. 50.
    Lehmann, J., Varzinczak, I.J., Bundy, A.: Reasoning with context in the semantic web. J. Web Sem. 12, 1–2 (2012)CrossRefGoogle Scholar
  51. 51.
    Lenat, D.B.: Automated theory formation in mathematics. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, pp. 833–842. Morgan Kaufmann, Cambridge (1977)Google Scholar
  52. 52.
    MacKenzie, D.: Mechanizing proof. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  53. 53.
    Mancosu, P., Jørgensen, K.F., Pedersen, S.A. (eds.): Visualization, Explanation and Reasoning Styles in Mathematics. Springer, Dordrecht (2005)zbMATHGoogle Scholar
  54. 54.
    Mancosu, P. (ed.): The Philosophy of Mathematical Practice. Oxford University Press, USA (2008)zbMATHGoogle Scholar
  55. 55.
    McCasland, R., Bundy, A.: MATHsAiD: a Mathematical Theorem Discovery Tool. In: Proceedings of SYNASC, pp. 17–22. IEEE (2006)Google Scholar
  56. 56.
    Martin, U.: Computers, reasoning and mathematical practice. In: Computational logic (Marktoberdorf, 1997). NATO Adv. Sci. Ser. F Comput. Systems Sci., vol. 165, pp. 301–346. Springer, Berlin (1999)CrossRefGoogle Scholar
  57. 57.
    Martin, U., Pease, A.: The mathematics social machine will be social! In: SOHUMAN 2013 (to appear, 2013)Google Scholar
  58. 58.
    McNeill, F., Bundy, A.: Dynamic, automatic, first-order ontology repair by diagnosis of failed plan execution. Int. J. Semantic Web Inf. Syst. 3(3), 1–35 (2007)CrossRefGoogle Scholar
  59. 59.
    Nigam, V., Miller, D.: A Framework for Proof Systems. J. Autom. Reasoning 45(2), 157–188 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery and concept invention. Expert Systems with Applications 39(2), 1637–1646 (2011)CrossRefGoogle Scholar
  61. 61.
    Nielsen, M.: Reinventing discovery: the new era of networked science. Princeton University Press (2011)Google Scholar
  62. 62.
    Nunokawa, K.: Applying Lakatos’ theory to the theory of mathematical problem solving. Educational Studies in Mathematics 31(3), 269–293 (1996)CrossRefGoogle Scholar
  63. 63.
    Pease, A.: A Computational Model of Lakatos-style Reasoning. PhD thesis, School of Informatics, University of Edinburgh (2007),
  64. 64.
    Pease, A., Colton, S., Charnley, J.: Automated theory formation: The next generation. IFCoLog Lectures in Computational Logic (forthcoming, 2013)Google Scholar
  65. 65.
    Pease, A., Martin, U.: Seventy four minutes of mathematics: An analysis of the third mini-polymath project. In: Proc. AISB Symp. on Mathematical Practice and Cognition II, pp. 19–29 (2012)Google Scholar
  66. 66.
    Plato: The Republic. OUP, Oxford (1993)Google Scholar
  67. 67.
    Pólya, G.: How to solve it. Princeton University Press (1945)Google Scholar
  68. 68.
    Pólya, G.: Mathematical Discovery. John Wiley and Sons, New York (1962)zbMATHGoogle Scholar
  69. 69.
    Polymath, D.H.J.: A new proof of the density Hales-Jewett theorem. Ann. of Math. (2) 175(3), 1283–1327 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Popper, K.R.: Objective Knowledge. OUP, Ely House (1972)Google Scholar
  71. 71.
    De Roure, D., Goble, C.A.: Software design for empowering scientists. IEEE Software 26(1), 88–95 (2009)CrossRefGoogle Scholar
  72. 72.
    Schlimm, D.: Two ways of analogy: Extending the study of analogies to mathematical domains. Philosophy of Science 75, 178–200 (2008)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Schoenfeld, A.H.: Pólya, problem solving, and education. Mathematics Magazine 60(5), 283–291 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Simon, H.: Machine discovery. Foundations of Science 2, 171–200 (1997)Google Scholar
  75. 75.
    Tappenden, J.: Mathematical concepts and definitions. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 256–275. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  76. 76.
    Tappenden, J.: Mathematical concepts: Fruitfulness and naturalness. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 276–301. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  77. 77.
    Tausczik, Y.R., Pennebaker, J.W.: Predicting the perceived quality of online mathematics contributions from users’ reputations. In: Tan, D.S., Amershi, S., Begole, B., Kellogg, W.A., Tungare, M. (eds.) CHI, pp. 1885–1888. ACM (2011)Google Scholar
  78. 78.
    Tausczik, Y.R., Pennebaker, J.W.: Participation in an online mathematics community: differentiating motivations to add. In: Poltrock, S.E., Simone, C., Grudin, J., Mark, G., Riedl, J. (eds.) CSCW, pp. 207–216. ACM (2012)Google Scholar
  79. 79.
    Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 240–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  80. 80.
    Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ursula Martin
    • 1
  • Alison Pease
    • 1
  1. 1.Queen Mary University of LondonUK

Personalised recommendations