Skip to main content

Formal Mathematics on Display: A Wiki for Flyspeck

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7961)

Abstract

The Agora system is a prototype “Wiki for Formal Mathematics”, with an aim to support developing and documenting large formalizations of mathematics in a proof assistant. The functions implemented in Agora include in-browser editing, strong AI/ATP proof advice, verification, and HTML rendering. The HTML rendering contains hyperlinks and provides on-demand explanation of the proof state for each proof step. In the present paper we show the prototype Flyspeck Wiki as an instance of Agora for HOL Light formalizations. The wiki can be used for formalizations of mathematics and for writing informal wiki pages about mathematics. Such informal pages may contain islands of formal text, which is used here for providing an initial cross-linking between Hales’s informal Flyspeck book, and the formal Flyspeck development.

The Agora platform intends to address distributed wiki-style collaboration on large formalization projects, in particular both the aspect of immediate editing, verification and rendering of formal code, and the aspect of gradual and mutual refactoring and correspondence of the initial informal text and its formalization. Here, we highlight these features within the Flyspeck Wiki.

Keywords

  • Formal Proof
  • Formal Text
  • Proof Assistant
  • Formal Code
  • Informal Description

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39320-4_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   49.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-39320-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   64.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)

    Google Scholar 

  3. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  4. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  5. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 1–2. ACM (2013)

    Google Scholar 

  6. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  7. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Tankink, C.: Proof in context — web editing with rich, modeless contextual feedback. To appear in Proceedings of UITP 2012 (2012)

    Google Scholar 

  9. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR abs/1211.7012 (2012)

    Google Scholar 

  10. Kohlhase, M. (ed.): OMDoc. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

    Google Scholar 

  11. Pérez, F., Granger, B.E.: IPython: a System for Interactive Scientific Computing. Comput. Sci. Eng. 9(3), 21–29 (2007)

    CrossRef  Google Scholar 

  12. Stein, W.A., et al.: Sage mathematics software (2009)

    Google Scholar 

  13. Tankink, C., Lange, C., Urban, J.: Point-and-write – documenting formal mathematics by reference. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 169–185. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  14. Hales, T.C.: Dense Sphere Packings - a blueprint for formal proofs. Cambridge University Press (2012)

    Google Scholar 

  15. Tankink, C., McKinna, J.: Dynamic proof pages. In: ITP Workshop on Mathematical Wikis (MathWikis). CEUR Workshop Proceedings, vol. 767 (2011)

    Google Scholar 

  16. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof re-animation. In: [24], pp. 440–454

    Google Scholar 

  17. Adams, M., Aspinall, D.: Recording and refactoring HOL Light tactic proofs. In: Proceedings of the IJCAR Workshop on Automated Theory Exploration (2012)

    Google Scholar 

  18. Kaliszyk, C., Urban, J.: Automated reasoning service for HOL Light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 120–135. Springer, Heidelberg (2013)

    Google Scholar 

  19. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)

    MATH  Google Scholar 

  20. Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)

    MATH  Google Scholar 

  21. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  22. Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction for HOL Light (2013)

    Google Scholar 

  23. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: Motivation, considerations, and initial prototype. In: [24], pp. 455–469

    Google Scholar 

  24. Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.): AISC 2010. LNCS, vol. 6167. Springer, Heidelberg (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H. (2013). Formal Mathematics on Display: A Wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds) Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Science(), vol 7961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39320-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39320-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39319-8

  • Online ISBN: 978-3-642-39320-4

  • eBook Packages: Computer ScienceComputer Science (R0)