Effective Decision Making in Changeable Spaces, Covering and Discovering Processes: A Habitual Domain Approach

  • Moussa Larbani
  • Po Lung Yu
Part of the Studies in Computational Intelligence book series (SCI, volume 502)


This chapter proposes a model of covering and discovering processes for solving non-trivial decision making problems in changeable spaces, which encompass most of the decision making problems that a person or a group of people encounter at individual, family, organization and society levels. The proposed framework fully incorporates two important aspects of the real-decision making process that are not fully considered in most of the traditional decision theories: the cognitive aspect and the psychological states of the decision makers and their dynamics. Moreover, the proposed model does not assume that the set of alternatives, criteria, outcomes, preferences, etc. are fixed or depend on some probabilistic and/or fuzzy parameter with known probability distribution and/or membership function. The model allows the creation of new ideas and restructuring of the decision parameters to solve problems. Therefore, it is called decision making/optimization in changeable spaces (DM/OCS). DM/OCS is based on Habitual Domain theory, the decision parameters, the concept of competence set and the mental operators 7-8-9 principles of deep knowledge. Some illustrative examples of challenging problems that cannot be solved by traditional decision making/optimization techniques are formulated as DM/OCS problems and solved. Finally, some directions of research are provided in conclusion.


Habitual domains Decision making Changeable spaces Parameters Covering Discovering Competence set Decision blinds Decision traps 


  1. 1.
    Allison, G.T.: The Essence of Decision: Explaining the Cuban Missile Crisis. Little, Brown and Company, Boston (1971)Google Scholar
  2. 2.
    Andersen D.L., Andersen D.F.: Theories of decision making: an annotated bibliography. Working Paper WP 943–77, Alfred P. Sloan School of Management, Massachusetts Institute of Technology (1977)Google Scholar
  3. 3.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming: theory and algorithms. Wiley-Interscience, New York (2006)Google Scholar
  4. 4.
    Bellman, R., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brehmer, B.: Dynamic decision making: human control of complex systems. Acta Psychol. 81(3), 211–241 (1992)CrossRefGoogle Scholar
  6. 6.
    Busemeyer, J.R., Towsend, J.T.: Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100(3), 432–459 (1993)CrossRefGoogle Scholar
  7. 7.
    Chan, S.J., Yu, P.L.: Stable habitual domains: existence and implications. J. Math. Anal. Appl. 110(2), 469–482 (1985)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cyert, R.M., March, J.G.: A behavioral theory of the firm. Prentice-Hall, Englewood Cliffs (1955)Google Scholar
  9. 9.
    Dantzig, G.B.: Linear programming and extensions. Princeton University Press, Princeton (1998)MATHGoogle Scholar
  10. 10.
    Edwards, W.: Dynamic decision theory and probabilistic information processing. Hum. Factors 4, 59–73 (1962)Google Scholar
  11. 11.
    Ehrgott, M., Gandibleux X.: Multiple criteria optimization: state of the art annotated bibliographic surveys. Kluwer Academic, Dordrecht (2003)Google Scholar
  12. 12.
    Gonzalez, G., Polina Vanyukov, P., Martin, M.K.: The use of microworlds to study dynamic decision making. Comput. Hum. Behav. 21, 273–286 (2005)CrossRefGoogle Scholar
  13. 13.
    Hsiao, N., Richardson, G.P.: In search of theories of dynamic decision making: a literature review, Proceedings of the 1999 International System Dynamics Conference, Wellington, New Zealand, August 1999. System Dynamics Society, Albany (1999)Google Scholar
  14. 14.
    Kahneman, D., Tversky, A.: Choices, prospect theory; an analysis of decision under risk. Econometrica 47, 313–327 (1979)CrossRefGoogle Scholar
  15. 15.
    Kelley, H.H.: Attribution theory in social psychology. Nebr. Symp. Motiv. 15, 192–238 (1967)Google Scholar
  16. 16.
    Larbani, M., Yu, P.L.: n-person second-order games: a paradigm shift in game theory. J. Optim. Theory Appl. 149(3), 447–473 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Larbani, M., Yu, P.L.: Two-person second-order games. Part II: restructuring operations to reach a win-win profile. J. Optim. Theory Appl. 141, 641–659 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Larbani, M., Yu, P.L.: Decision making and optimization in changeable spaces, a new paradigm. J. Optim. Theory Appl. (JOTA) 155(3), 727–761 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Luce, R.D., Raiffa, H.: Games and decisions: introduction and critical survey. Wiley, New York (1957)MATHGoogle Scholar
  20. 20.
    Osinga, S., Hofstede, G.J., Verwaart, T.: Emergent results of artificial economics. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2011)CrossRefGoogle Scholar
  21. 21.
    Sakawa M., Nishizaki I., Katagiri H.: Fuzzy stochastic multiobjective programming. International series in Operations Research and Management Sciences, vol. 159. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Shapiro, A., Dentcheva, D., Ruszczyński A.: Lectures on stochastic programming: modeling and theory. MPS/SIAM Series on Optimization. 9, Society for Industrial and Applied Mathematics, Philadelphia (2009)Google Scholar
  23. 23.
    Simon, H.A.: Models of man: social and rational, mathematical essays on rational human behavior in a social Setting. Wiley, New York (1957)MATHGoogle Scholar
  24. 24.
    Slowinski, R., Teghem, J.: Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer Academic, Dordrecht (1990)CrossRefMATHGoogle Scholar
  25. 25.
    Steinbruner, J.D.: The cybernetic theory of decision: new dimensions of political analysis. Princeton University Press, Princeton (1974)Google Scholar
  26. 26.
    Steuer, R.E.: Multiple criteria optimization: theory, computation and application. Wiley, New York (1986)MATHGoogle Scholar
  27. 27.
    Tversky, A.: Intransitivity of preferences. Psychol. Rev. 76(1), 31–48 (1969)CrossRefGoogle Scholar
  28. 28.
    Tversky A., Kahneman D.: The Framing of decisions and the psychology of choice. Science 211(4481), 453–458 (1981)Google Scholar
  29. 29.
    Tversky A., Kahneman D., Rational choice and the framing of decisions. J. Bus. 59(4) Part 2: The Behavioral Foundations of, Economic Theory, S251–S278 (1986)Google Scholar
  30. 30.
    Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press, Princeton (1947)MATHGoogle Scholar
  31. 31.
    Yu, P.L.: Habitual Domains and forming winning strategies. NCTU Press, Taiwan (2002)Google Scholar
  32. 32.
    Yu, P.L.: Habitual domains: freeing yourself from the limits on your life. Highwater Editions, Kansas (1995)Google Scholar
  33. 33.
    Yu, P.L.: Habitual domains. Oper. Res. 39(6), 869–876 (1991)CrossRefGoogle Scholar
  34. 34.
    Yu, P.L.: Forming winning strategies, an integrated theory of habitual domains. Springer, New York (1990)CrossRefGoogle Scholar
  35. 35.
    Yu, P.L.: Understanding behaviors and forming winning strategies. Monograph. School of Business, University of Kansas, Kansas (1989)Google Scholar
  36. 36.
    Yu, P.L.: Multiple criteria decision making: concepts, techniques and extensions. Plenum Press, New York (1985)CrossRefMATHGoogle Scholar
  37. 37.
    Yu, P.L., Chen, Y.C.: Dynamic multiple criteria decision making in changeable spaces: from habitual domains to innovation dynamics. Ann. Oper. Res. 197, 201–220 (2012)CrossRefMATHGoogle Scholar
  38. 38.
    Yu, P.L., Chen, Y.C.: Blinds, fuzziness and habitual domain tools in decision making with changeable spaces. Hum. Syst. Manag. 29(4), 231–242 (2010)Google Scholar
  39. 39.
    Yu, P.L., Larbani, M.: Two-person second-order games, Part 1: formulation and transition anatomy. J. Optim. Theory Appl. 141(3), 619–639 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Yu, P.L., Zhang, D.: A marginal analysis for competence set expansion. J. Optim. Theory Appl. 76(1), 87–109 (1993)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Yu, P.L., Zhang, D.: A foundation for competence set analysis. Math. Soc. Sci. 20(3), 251–299 (1990)CrossRefMATHGoogle Scholar
  42. 42.
    Yu, P.L., Zhang, D.: Competence set analysis for effective decision making. Control Theory Adv. Technol. 5(4), 523–547 (1989)Google Scholar
  43. 43.
    Zimmermann, H.J.: Fuzzy set theory and its application. Kluwer Academic, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Business AdministrationIIUM UniversityKuala LumpurMalaysia
  2. 2.Institute of Information ManagementNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.School of BusinessUniversity of KansasLawrenceUSA

Personalised recommendations