Advertisement

Aggregating Imprecise Linguistic Expressions

  • Edurne Falcó
  • José Luis García-Lapresta
  • Llorenç Roselló
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 502)

Abstract

In this chapter, we propose a multi-person decision making procedure where agents judge the alternatives through linguistic expressions generated by an ordered finite scale of linguistic terms (for instance, ‘very good’, ‘good’, ‘acceptable’, ‘bad’, ‘very bad’). If the agents are not confident about their opinions, they might use linguistic expressions composed by several consecutive linguistic terms (for instance, ’between acceptable and good’). The procedure we propose is based on distances and it ranks order the alternatives taking into account the linguistic information provided by the agents. The main features and properties of the proposal are analyzed.

Keywords

Group decision-making linguistic assessments Imprecision Distances 

Notes

Acknowledgments

The authors are grateful to Jorge Alcalde-Unzu and Ilan Fischer for their suggestions. The financial support of the Spanish Ministerio de Ciencia e Innovación (projects ECO2009-07332, ECO2009-12836, ECO2008-03204-E/ECON, TIN2010-20966-C02-01 and TIN2010-20966-C02-02, SENSORIAL Research Project TIN2010-20966-C02-01 and TIN2010-20966-C02-02), the Spanish Ministerio de Economía y Competitividad (project ECO2012-32178), and ERDF are also acknowledged.

References

  1. 1.
    Balinski, M., Laraki, R.: A theory of measuring, electing and ranking. Proc. Nat. Academy Sci. U.S.A. 104, 8720–8725 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Balinski, M., Laraki, R.: Majority Judgment. Measuring, Ranking, and Electing. The MIT Press, Cambridge, (2011)Google Scholar
  3. 3.
    Balinski, M., Laraki, R.: Election by Majority Judgement: Experimental evidence. In: Dolez, B, Grofman, B, Laurent, A.(eds.), In Situ and Laboratory Experiments on Electoral Law Reform: French Presidential Elections. Studies in Public Choice vol. 25, pp. 13–54. Springer, New York (2011)Google Scholar
  4. 4.
    de Borda, J.C, Mémorie sur les élections au scrutin, Historie de l’Academie Royale des Sciences, Paris, (1781)Google Scholar
  5. 5.
    Brams, S.J., Fishburn, P.C.: Approval Voting. Am. Political Sci. Rev. 72, 831–847 (1978)CrossRefGoogle Scholar
  6. 6.
    Brams, S.J., Fishburn, P.C.: Approval Voting. Birkhäuser, Boston (1983)MATHGoogle Scholar
  7. 7.
    Falcó, E., García-Lapresta, J.L.: A distance-based extension of the majority judgement voting system. Acta Universitatis Matthiae Belii, series Mathematics 18, 17–27 (2011)Google Scholar
  8. 8.
    Falcó, E., García-Lapresta, J.L.: Aggregating individual assessments in a finite scale. World Conference on Soft Computing, San Francisco (2011)Google Scholar
  9. 9.
    Felsenthal, D.S., Machover, M.: The Majority Judgement voting procedure: a critical evaluation. Homo Oeconomicus 25, 319–334 (2008)Google Scholar
  10. 10.
    García-Lapresta, J.L.: A general class of simple majority decision rules based on linguistic opinions. Inf. Sci. 176, 352–365 (2006)CrossRefMATHGoogle Scholar
  11. 11.
    García-Lapresta, J.L., Llamazares, B., Martínez-Panero, M.: A Social Choice analysis of the Borda rule in a general linguistic framework. Inte. J. Comput. Intell. Syst. 3, 501–513 (2010)Google Scholar
  12. 12.
    García-Lapresta, J.L., Martínez-Panero, M.: Linguistic-based voting through centered OWA operators. Fuzzy Optim. Decis. Mak. 8, 381–393 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    García-Lapresta, J.L., Martínez-Panero, M., Meneses, L.C.: Defining the Borda count in a linguistic decision making context. Inf. Sci. 179, 2309–2316 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8, 746–752 (2000)CrossRefGoogle Scholar
  15. 15.
    Kacprzyk, J., Zadrożny, S.: Computing with words in decision making: through individual and collective linguistic choice rules. Int. J. Uncertain, Fuzziness Knowl. Based Syst. 9 (Suppl.), 89–102 (2001)Google Scholar
  16. 16.
    Ma, J., Ruan, D., Xu, Y., Zhang, G.: A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision making. Int. J. Approximate Reasoning 44(2), 165–181 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nurmi, H.: Voting Theory. In: Ríos-Insua, D, French, S, (eds.) e-Democracy. A Group Decision and Negotiation Perspective. Advances in Group Decision and Negotiation, vol. 5, pp. 101–124. Springer, Berlin, (2010)Google Scholar
  18. 18.
    Rodríguez, R., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic terms sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)CrossRefGoogle Scholar
  19. 19.
    Roselló, L., Prats, F., Agell, N., Sánchez, M.: Measuring consensus in group decisions by means of qualitative reasoning. Int. J. Approx. Reason. 51, 441–452 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Roselló, L., Prats, F., Agell, N., Sánchez, M.: A qualitative reasoning approach to measure consensus. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Numi, H., Fedrizzi, M., Zadr\(\dot{\rm {o}}\)zny, S. (eds.) Consensual Proceses, STUDFUZZ, vol. 267, pp. 235–261. Springer, Berlin (2011)Google Scholar
  21. 21.
    Roselló, L., Prats, F., Agell, N., Sánchez, M., Mazaira, F.A.: Using consensus and between generalized multiattribute linguistic assessments for group decision-making. Inform. Fusion ( in press). doi: 10.1016/j.inffus.2011.09.001
  22. 22.
    Smith, W.D., On Balinski and Laraki’s Majority Judgement median-based range-like voting scheme. http://rangevoting.org/MedianVrange.html (2007)
  23. 23.
    Tang, Y., Zheng, J.: Linguistic modelling based on semantic similarity relation among linguistic labels. Fuzzy Sets Syst. 157, 1662–1673 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Travé-Massuyès, L., Dague, P. (eds.): Modèles et Raisonnements Qualitatifs. Hermes Science, Paris (2003)Google Scholar
  25. 25.
    Travé-Massuyès, L., Piera, N.: The orders of magnitude models as qualitative algebras. Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, (1989)Google Scholar
  26. 26.
    Wallsten, T.S., Budescu, D.V., Rapoport, A., Zwick, R., Forsyth, B.: Measuring the vague meanings of probability terms. J. Exp. Psychol. 115, 348–365 (1986)CrossRefGoogle Scholar
  27. 27.
    Weber, A.: Über den Standort der Industrien. Erster Teil: Reine Theorie des Standorts. Verlag JCB Mohr Tübingen (1909)Google Scholar
  28. 28.
    Yager, R.R.: Centered OWA operators. Soft. Comput. 11, 631–639 (2007)CrossRefMATHGoogle Scholar
  29. 29.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  30. 30.
    Zahid, M.A.: A new framework for elections. Ph.D. Dissertation, Tilburg (2012)Google Scholar
  31. 31.
    Zimmer, A.C.: Verbal vs. numerical processing of subjective probabilities. In: Scholz, R.W. (ed.) Decision Making Under Uncertainty. pp. 159–182. North-Holland, Amsterdam, (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Edurne Falcó
    • 1
  • José Luis García-Lapresta
    • 2
  • Llorenç Roselló
    • 3
  1. 1.PRESAD Research Group, IMUVAUniversidad de ValladolidValladolidSpain
  2. 2.PRESAD Research Group, IMUVA, Dept. de Economía AplicadaUniversidad de ValladolidValladolidSpain
  3. 3.Dept. de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations