Skip to main content

Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach

  • Chapter
Automated Scheduling and Planning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 505))

Abstract

Handling multiple conflicting objectives in dynamic job shop scheduling is challenging because many aspects of the problem need to be considered when designing dispatching rules. A multi-objective genetic programming based hyperheuristic (MO-GPHH) method is investigated here to facilitate the designing task. The goal of this method is to evolve a Pareto front of non-dominated dispatching rules which can be used to support the decision makers by providing them with potential trade-offs among different objectives. The experimental results under different shop conditions suggest that the evolved Pareto front contains very effective rules. Some extensive analyses are also presented to help confirm the quality of the evolved rules. The Pareto front obtained can cover a much wider ranges of rules as compared to a large number of dispatching rules reported in the literature.Moreover, it is also shown that the evolved rules are robust across different shop conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atlan, L., Bonnet, J., Naillon, M.: Learning distributed reactive strategies by genetic programming for the general job shop problem. In: Proceedings of the 7th Annual Florida Artificial Intelligence Research Symposium (1994)

    Google Scholar 

  2. Baker, K.R.: Sequencing rules and due-date assignments in a job shop. Management Science 30, 1093–1104 (1984)

    Article  Google Scholar 

  3. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An Introduction. Morgan Kaufmann, San Francisco (1998)

    Book  MATH  Google Scholar 

  4. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Transactions on Evolutionary Computation (2012), doi:10.1109/TEVC.2012.2199119

    Google Scholar 

  5. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring hyper-heuristic methodologies with genetic programming. Artificial Evolution 1, 177–201 (2009)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for a classic one-machine scheduling problem. Advances in Engineering Software 32(6), 489–498 (2001)

    Article  MATH  Google Scholar 

  8. Geiger, C.D., Uzsoy, R.: Learning effective dispatching rules for batch processor scheduling. International Journal of Production Research 46, 1431–1454 (2008)

    Article  MATH  Google Scholar 

  9. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dispatching rules: An autonomous learning approach. Journal of Heuristics 9(1), 7–34 (2006), doi: http://dx.doi.org/10.1007/s10951-006-5591-8

    Google Scholar 

  10. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for complex shop floor scenarios: a genetic programming approach. In: GECCO 2010: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264. ACM, New York (2010)

    Chapter  Google Scholar 

  11. Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: Further developments. Production Planning & Control 11(2), 171–178 (2000)

    Article  Google Scholar 

  12. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear priority dispatch rules for job-shop scheduling. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 263–277. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 73–84. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Jakobović, D., Jelenković, L., Budin, L.: Genetic programming heuristics for multiple machine scheduling. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 321–330. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop scheduling: a step forward. International Journal of Production Research 38, 563–586 (2000)

    Article  MATH  Google Scholar 

  16. Jones, A., Rabelo, L.C.: Survey of job shop scheduling techniques. Tech. rep., NISTIR, National Institute of Standards and Technology, Gaithersburg, US (1998)

    Google Scholar 

  17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  18. Li, X., Olafsson, S.: Discovering dispatching rules using data mining. Journal of Scheduling 8, 515–527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miyashita, K.: Job-shop scheduling with GP. In: GECCO 2000: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 505–512 (2000)

    Google Scholar 

  20. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons (2001)

    Google Scholar 

  21. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems. In: CEC 2012: IEEE Congress on Evolutionary Computation, pp. 3332–3339 (2012)

    Google Scholar 

  22. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Evolving reusable operation-based due-date assignment models for job shop scheduling with genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 121–133. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Nie, L., Shao, X., Gao, L., Li, W.: Evolving scheduling rules with gene expression programming for dynamic single-machine scheduling problems. The International Journal of Advanced Manufacturing Technology 50, 729–747 (2010)

    Article  Google Scholar 

  24. Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Operations Research 25, 45–61 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer (2008)

    Google Scholar 

  26. Rafter, J.A., Abell, M.L., Braselton, J.P.: Multiple comparison methods for means. SIAM Review 44(2), 259–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajendran, C., Holthaus, O.: A comparative study of dispatching rules in dynamic flowshops and jobshops. European Journal of Operational Research 116(1), 156–170 (1999)

    Article  MATH  Google Scholar 

  28. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job shop scheduling problem under different flow time- and tardiness-related objective functions. International Journal of Production Research (2011)

    Google Scholar 

  29. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computer and Industrial Engineering 54, 453–473 (2008)

    Article  Google Scholar 

  30. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness costs. Management Science 33, 1035–1047 (1987)

    Article  Google Scholar 

  31. Wang, Z., Tang, K., Yao, X.: Multi-objective approaches to optimal testing resource allocation in modular software systems. IEEE Transactions on Reliability 59(3), 563–575 (2010)

    Article  Google Scholar 

  32. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject to machine breakdowns with genetic programming. In: CEC 2003: IEEE Congress on Evolutionary Computation, pp. 1050–1055 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C. (2013). Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach. In: Uyar, A., Ozcan, E., Urquhart, N. (eds) Automated Scheduling and Planning. Studies in Computational Intelligence, vol 505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39304-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39304-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39303-7

  • Online ISBN: 978-3-642-39304-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics