Generation of Trajectories Using Predictive Control for Tracking Consensus with Sensing and Connectivity Constraint

  • Bernardo Ordoñez
  • Ubirajara F. Moreno
  • Jés Cerqueira
  • Luis Almeida
Part of the Studies in Computational Intelligence book series (SCI, volume 507)


This work presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The approach is based on consensus algorithms, which are basically characterized by information exchange among the team members. The proposal is based on predictive control in order to compute decentralized control laws, considering constraints and different response requirements according to the application scenario, for example, constraints related to coverage and connectivity of the group. Our work allows considering together vehicles without and with non-holonomic restrictions while optimizing the sensing range, particularly that of fixed frontal cameras, by managing orientation in the way to the rendezvous point. We show the effectiveness of our strategy with simulation results.


Consensus algorithm Cooperation strategies Optimization Non holonomic constraint 


  1. 1.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–234 (2007)Google Scholar
  2. 2.
    Schurr, N., Okamoto, S., Maheswaran, R., Scerri, P., Tambe, M.: Evolution of a Teamwork Model, Cognitive Modeling and Multi-Agent Interactions. Cambridge University Press, Cambridge (2005)Google Scholar
  3. 3.
    Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129, 571–584 (2007)CrossRefGoogle Scholar
  4. 4.
    Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control—Theory and Applications. Communications and Control Engineering. Springer, London (2008)Google Scholar
  5. 5.
    Ren, W.: Consensus tracking under directed interaction topologies: algorithms and experiments. IEEE Trans. Control Syst. Technol. 18, 230–237 (2010)CrossRefGoogle Scholar
  6. 6.
    Ordonez, B., Moreno, U.F., Cerqueira, J., Almeida, L.: Generation of trajectories using predictive control for tracking consensus with sensing. Procedia Comput. Sci. 10, 1094–1099 (2012)Google Scholar
  7. 7.
    Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Appl. Probab. 14, 89–97 (1977)Google Scholar
  8. 8.
    DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)CrossRefMATHGoogle Scholar
  9. 9.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)Google Scholar
  10. 10.
    Saber, R.O., Richard, S., Murray, R.M.: Consensus protocols for networks of dynamic agents. In: American Control Conference, Denver, 2003Google Scholar
  11. 11.
    Lin, Z., Broucke, M., Francis, B.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)Google Scholar
  12. 12.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)Google Scholar
  13. 13.
    Beard, R.W., McLain, T.W., Nelson, D., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. In: Proc. IEEE 94, 1306–1324 (2006)Google Scholar
  14. 14.
    Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. In: IEEE Conference on Decision and Control, Atlantis, 2004Google Scholar
  15. 15.
    Decastro, G.A., Paganini, F.: Convex synthesis of controllers for consensus. In: American Control Conference, Boston, 2004Google Scholar
  16. 16.
    Dunbar, W., Murray, R.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42, 549–558 (2006)Google Scholar
  17. 17.
    Bauso, D., Giarre, L., Pesenti, R.: Mechanism design for optimal consensus problems. In: IEEE Conference on Decision and Control, San Diego, 2006Google Scholar
  18. 18.
    Semsar-Kazerooni, E., Khorasan, K.: Optimal consensus algorithms for cooperative team of agents subject to partial information. Automatica 44, 2766–2777 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Listmann, K.D., Masalawala, M.V., Adamy, J.: Consensus for formation control of nonholonomic mobile robots. In: IEEE International Conference on Robotics and Automation, New Jersey, 2009Google Scholar
  20. 20.
    Semsar-Kazerooni, E., Khorasani, K.: An LMI approach to optimal consensus seeking in multi-agent systems. In: American Control Conference, St. Louis, 2009Google Scholar
  21. 21.
    Jakovetic, D., Xavier, J., Moura, J.: Weight optimization for consensus algorithms with correlated switching topology. IEEE Trans. Signal Process. 58, 3788–3801 (2010)Google Scholar
  22. 22.
    Cao, Y., Ren, W.: Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40, 819–830 (2010)Google Scholar
  23. 23.
    Kuwata, Y., How, J.P.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans. Control Syst. Technol. 19, 423–431 (2010)Google Scholar
  24. 24.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)Google Scholar
  25. 25.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007)Google Scholar
  26. 26.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bernardo Ordoñez
    • 1
  • Ubirajara F. Moreno
    • 1
  • Jés Cerqueira
    • 2
  • Luis Almeida
    • 3
  1. 1.Department of Automation and Systems EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Electrical EngineeringFederal University of BahiaSalvadorBrazil
  3. 3.IT—Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations