Skip to main content

Ensemble of Local Phase Quantization Variants with Ternary Encoding

  • Chapter
  • First Online:
Local Binary Patterns: New Variants and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 506))


In this chapter, we present some variants of local phase quantization (LPQ), a novel texture descriptor that has been shown to perform well on a variety of classification tasks. After providing an extensive review of LPQ, we report experiments using several new LPQ derivatives obtained by varying LPQ parameters and by using a ternary rather than the binary encoding scheme. Multiple parameter sets are generated and each set is used to train a standard machine-learning classifier, a stand-alone support vector machine. The ensemble is then combined using the sum rule. Extensive experiments are conducted using six different datasets. Our method is compared along with the best state-of-the-art methods for solving each problem represented by the datasets. In each case, the best result is obtained using an ensemble with LPQ variants and ternary encoding. In this study, we also examine the distribution in the images of the most important bins of the LPQ histograms using Gabor filters. We find that incorporating this information into our best texture descriptor approach produces even better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    The DaimlerChrysler dataset is available at

  2. 2.

    Available at

  3. 3.

    HeLa dataset is available at at

  4. 4.

    The matlab code for extracting the distance matrix is available at


  1. Chan, C.H., Kittler, J., Poh, N., Ahonen, T., Pietikäinen, M.: (Multiscale) local phase quantization histogram discriminant analysis with score normalisation for robust face recognition. In: IEEE Workshop on Video-Oriented Object and Event Classification, pp. 633–640. Kyoto, Japan (2009)

    Google Scholar 

  2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 9th European Conference on Computer Vision, San Diego CA (2005)

    Google Scholar 

  4. Fawcett, T.: ROC graphs: notes and practical considerations for researchers. HP Laboratories, Palo Alto (2004)

    Google Scholar 

  5. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification, In: Nature Inspired Smart Information Systems (NiSIS). pp. 1–9 Albufeira, (2005)

    Google Scholar 

  6. Junior, G.B., Cardoso de Paiva, A., Muniz de Oliveira, A.C.: Classification of breast tissues using Moran’s index and Geary’s coefficient as texture signatures and SVM. Comput. Biol. Med. 39(12), 1063–1072 (2009)

    Article  Google Scholar 

  7. Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Res. 20(1), 374 (2000)

    Article  Google Scholar 

  8. Kong, W.K., Zhang, D., Li, W.: Palmprint feature extraction using 2-D Gabor filters. Pattern Recogn. 36, 2317–2339 (2003)

    Article  Google Scholar 

  9. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)

    Article  MathSciNet  Google Scholar 

  10. Lowe, D.: Distinctive image features from scale invariant key points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Google Scholar 

  11. Manjunath, B., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  12. Nanni, L., Brahnam, S., Lumini, A.: A study for selecting the best performing rotation invariant patterns in local binary/ternary patterns, in image processing, Computer Vision, & Pattern Recognition (IPCV’10), Las Vegas, (2010)

    Google Scholar 

  13. Nanni, L., Shi, J.- Y., Brahnam, S., Lumini, A.: Protein classification using texture descriptors extracted from the protein backbone image. J. Theor. Biol. (In Press.)

    Google Scholar 

  14. Nanni, L., Lumini, A.: Ensemble of multiple pedestrian representations. IEEE Trans. Intell. Transp. Syst. 9(2), 365–369 (2008)

    Article  Google Scholar 

  15. Nanni, L., Lumini, A.: Coding of amino acids by texture descriptors. Artif. Intell. Med. 48(1), 43–50 (2010)

    Article  Google Scholar 

  16. Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Tran. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  17. Ojansivu, V., Heikkila, J.: Blur insensitive texture classification using local phase quantization. In: ICISP 2008

    Google Scholar 

  18. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions, Anal. Modell. Faces Gestures, LNCS vol. 4778, 168–182 (2007)

    Google Scholar 

Download references


The authors would like to thank T. Ojala, M. Pietikäinen and T. Mäenpää for sharing their LBP code and V. Ojansivu and J. Heikkilä for sharing their LPQ code

Author information

Authors and Affiliations


Corresponding author

Correspondence to Loris Nanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nanni, L., Brahnam, S., Lumini, A., Barrier, T. (2014). Ensemble of Local Phase Quantization Variants with Ternary Encoding. In: Brahnam, S., Jain, L., Nanni, L., Lumini, A. (eds) Local Binary Patterns: New Variants and Applications. Studies in Computational Intelligence, vol 506. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39288-7

  • Online ISBN: 978-3-642-39289-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics