Abstract
In this chapter we describe a unifying framework for local binary patterns and variants which we refer to as histograms of equivalent patterns (HEP). In presenting this concept we discuss some basic issues in texture analysis: the problem of defining what texture is; the problem of classifying the many existing texture descriptors; the concept of bag-of-features and the design choices that one has to deal with when designing a texture descriptor. We show how this relates to local binary patterns and related methods and propose a unifying mathematical formalism to express them within the HEP. Finally, we give a geometrical interpretation of these methods as partitioning operators in a high-dimensional space, showing how this representation can propound possible directions for future research.
Keywords
- Kernel Function
- Feature Space
- Local Binary Pattern
- Texture Descriptor
- Image Patch
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ahonen, T., Pietikäinen, M.: Soft histograms for local binary patterns. In: Proceedings of the Finnish Signal Processing Symposium (FINSIG 2007), Oulu (2007)
Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram Fourier features. In: Proceedings of the 16th Scandinavian Conference (SCIA 2009), Lecture Notes in Computer Science, vol. 5575, pp. 61–70. Springer (2009)
Barcelo, A., Montseny, E., Sobrevilla, P.: On fuzzy texture spectrum for natural microtextures characterization. In: Proceedings EUSFLAT-LFA 2005, pp. 685–690 (2005)
Beck, M., Robins, S.: Computing the continuous discretely. Integer-point Enumeration in Polyhedra. Springer, New York (2007)
Bianconi, F., Fernández, A.: Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recogn. 40(12), 3325–3335 (2007)
Bianconi, F., Fernández, A., González, E., Ribas, F.: Texture classification through combination of sequential colour texture classifiers. In: Rueda, L., Mery, D., Kittler, J., (eds.) Progress in Pattern Recognition, Image Analysis and Applications. Proceedings of the 12th Iberoamerican Congress on Pattern Recognition (CIARP 2007), Lecture Notes in Computer Science, vol. 4756, pp. 231–240. Springer (2008)
Bianconi, F., Fernández, A., González, E., Caride, D., Calviño, A.: Rotation-invariant colour texture classification through multilayer CCR. Pattern Recogn. Lett. 30(8), 765–773 (2009)
Bianconi, F., Fernández, A.: On the occurrence probability of local binary patterns: a theoretical study. J. Math. Imaging Vis. 40(3), 259–268 (2011)
Boureau, Y.-L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 111–118. Haifa, June 2010
Chang, C.-I., Chen, Y.: Gradient texture unit coding for texture analysis. Opt. Eng. 43(8), 1891–1902 (2004)
Crosier, M., Griffin, L. D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88, 447–460 (2010)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2, 1160–1169 (1985)
Davies, E. R.: Introduction to texture analysis. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 1–31. Imperial College Press, London (2008)
Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 524–531, June 2005
Fernández, A., Álvarez, M. X., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49(9–10), 1177–1184 (2011)
Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P. F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011)
Fernández, A., Álvarez, M. X., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imag. Vis. 45(1), 76–102 (2012)
Fu, X., Wei, W.: Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the Fourth International Conference on Natural Computation (ICNC’08), vol. 4, pp. 115–119 (2008)
Gangeh, M. J., Ghodsi, A., Kamel, M.: Dictionary learning in texture classification. In: Kamel, M., Campilho, A. (eds.) Proceedings of the 8th International Conference on Image Analysis and Recognition (ICIAR 2011), Lecture Notes in Computer Science, vol. 6753, pp. 335–343. Springer, Burnaby, June 2011
Geman, D., Koloydenko, A.: Invariant statistics and coding of natural microimages. In: Proceedings of the First International Workshop on Statistical and Computational Theories of Vision, Fort Collins, 1999 (published on the web)
van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.-M.: Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1271–1283 (2010)
Ghita, O., Ilea, D. E., Fernández, A., Whelan, P. F.: Local binary patterns versus signal processing texture analysis. A study from a performance evaluation perspective. Sens. Rev. 32, 149–162 (2012)
van Gool, L., Dewaele, P., Oosterlinck, A.: Texture analysis anno 1983. Comput. Vis. Graph. Image Process. 29(3), 336–357 (1985)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: Proceedings of the 4th International Conference on Image Analysis and Recognition (ICIAR 2007), Lecture Notes in Computer Science, vol. 4633, pp. 387–398. Montreal, August 2007
Haralick, R. M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)
He, Y., Sang, N., Gao, C.: Multi-structure local binary patterns for texture classification. Pattern Anal. Appl. pp. 1–13 (2012) (Article in Press)
He, D.-C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IIEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990)
He, D.-C., Wang, L.: Unsupervised textural classification of images using the texture spectrum. Pattern Recogn. 25(3), 247–255 (1992)
He, Y., Sang, N.: Robust illumination invariant texture classification using gradient local binary patterns. In: Proceedings of 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, pp. 1–6. Xiamen, January 2011
Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)
Hepplewhite, L., Stonhamm, T. J.: Texture classification using N-tuple pattern recognition. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96), vol. 4, pp. 159–163 (1996)
Iakovidis, D. K., Keramidas, E. G., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization. In: Campilho, A., Kamel, M. (eds.) Proceedings of the 5th International Conference on Image Analysis and Recognition (ICIAR 2008), Lecture Notes in Computer Science, vol. 5112, pp. 750–759. Póvoa de Varzim (2008)
Jiang, Y.-G., Ngo, C.-W., Jun Yang.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR’07), pp. 494–501 (2007)
Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004)
Julesz, B.: Experiments in the visual perception of texture. Sci. Am. 232(4), 34–43 (1975)
Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 604–610 (2005)
Kant, I.: The Critique of Pure Reason. Pennsylvania State Electronic Classics Series, 2010 Translated by Meiklejoh, J.M.D
Konishi, S., Yuille, A. L.: Statistical cues for domain specific image segmentation with performance analysis. In: Proceedings of the 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’00), vol. 1, pp. 125–132 (2000)
Kurmyshev, E. V., Cervantes, M.: A quasi-statistical approach to digital binary image representation. Rev. Mex. Fís. 42(1), 104–116 (1996)
Lahdenoja, O.: A statistical approach for characterising local binary patterns. Technical Report 795, Turku Centre for Computer Science, Finland, (2006)
Lawrence, J.: Polytope volume computation. Math. Comput. 57(195), 259–271 (1991)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)
Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vision 43(1), 29–44 (2001)
Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Trans. Image Process. 12(6), 661–670 (2003)
Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: Proceedings of the 13th IEEE International Conference on Computer Vision (ICCV 2011), pp. 2486–2493 (2011)
Liu, L., Fieguth, P. W.: Texture classification from random features. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 574–586 (2012)
Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P. W.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)
Lowe, D. G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Madrid-Cuevas, F.J., Medina, R., Prieto, M., Fernández, N.L., Carmona, A.: Simplified texture unit: a new descriptor of the local texture in gray-level images. In: Perales López, F.J., Campilho, A.C., Pérez de la Blanca, N., Sanfeliu, A. (eds.) Pattern Recognition and Image Analysis, Proceedings of the First Iberian Conference (IbPRIA 2003), Lecture Notes in Computer Science, vol. 2652, pp. 470–477. Springer (2003)
Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 197–216. World Scientific Publishing (2005)
Malik, J., Belongie, S., Shi, J., Leung, T.: Textons, contours and regions: cue integration in image segmentation. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV’99), vol. 2, pp. 918–925 (1999)
Manning, C.D., Raghavan, P., Schütze, H.: An introduction to information retrieval. Cambridge University Press, Cambridge, (2009)
Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)
Nanni, L., Brahnam, S. Lumini, A.: A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37(12), 7888–7894 (2010)
Nanni, L., Brahnam, S., Lumini, A.: Random interest regions for object recognition based on texture descriptors and bag of features. Expert Syst. Appl. 39(1), 973–977 (2012)
Nowak, E. Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Proceedings of European Conference on Computer Vision 2006 (ECCV’06), Part IV, Lecture Notes in Computer Science, vol. 3954, pp. 490–503. Springer-Verlag (2006)
Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 582–585 (1994)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)
Ojala, T., Pietikäinen, M., Kyllönen, J.: Gray level cooccurrence histograms via learning vector quantization. In: Proceedings of the 11th Scandinavian Conference on Image Analysis (SCIA 1999), pp. 103–108. Kangerlussuaq, Greenland (1999)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Patel, D., Stonham, T. J.: A single layer neural network for texture discrimination. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 2656–2660, June 1991
Patel, D., Stonham, T. J.: Texture image classification and segmentation using rank-order clustering. In: Proceedings of the 11th International Conference on Pattern Recognition (ICPR’92), vol. 3, pp. 92–95. IEEE Computer Society (1992)
Penatti, O. A. B., Valle, E., da Silva Torres, R.: Comparative study of global color and texture descriptors for web image retrieval. J. Vis. Commun. Image Represent. 23, 359–380 (2012)
Petrou M., Sevilla, P.G: Image Processing. Dealing with Texture. Wiley Interscience, Chichester (2006)
Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, Computational Imaging and Vision, vol. 40. Springer, London, (2011)
Pothos, V. K., Theoharatos, C., Zygouris, E., Economu, G.: Distributional-based texture classification using non-parametric statistics. Pattern Anal. Appl. 11, 117–129 (2008)
Tajeripour, F., Rezaei, M., Saberi, M., Ershad, S. F.: Texture classification approach based on combination of random threshold vector technique and co-occurrence matrixes. In: Proceedings of the International Conference on Computer Science and Network Technology, 2011 (ICCSNT), vol. 4, pp. 2303–2306. Harbin, China, December 2011
Rouco, J., Mosquera, A., Penedo, M. G., Ortega, M., Penas, M.: Texture description in local scale using texton histograms with quadrature filter universal dictionaries. IET Comput. Vision 5(4), 211–221 (2011)
Rubner, Y., Tomasi, C., Guibas, L. J.: A metric for distributions with applications to image databases. In: Proceedings of the Sixth International Conference on Computer Vision (ICCV’98), pp. 59–66, (1998)
Sánchez-Yáñez, R. E., Kurmyshev, E. V., Fernández, A.: One-class texture classifier in the CCR feature space. Pattern Recogn. Lett. 24(9–10), 1503–1511 (2003)
Sebe, N., Lew, M. S.: Texture features for content-based retrieval. In: Lew, M. S. (ed.) Principles of Visual Information Retrieval, pp. 51–85. Springer-Verlag, London (2001)
Serratosa, F., Sanfeliu, A.: Signatures versus histograms: definitions, distances and algorithms. Pattern Recogn. 39(5), 921–934 (2006)
Stachowiak, G. P., Podsiadlo, P., Stachowiak, G. W.: A comparison of texture feature extraction methods for machine condition monitoring and failure analysis. Tribol. Lett. 20(2), 133–147 (2005)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modelling of Faces and Gestures, Lecture Notes in Computer Science, vol. 4778, pp. 168–182. Springer (2007)
Taur, J. S., Tao, C.-W.: Texture classification using a fuzzy texture spectrum and neural networks. J. Electron. Imaging 7(1), 29–35 (1998)
Tuceryan, M., Jain, A.K.: Texture analysis. In Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn. pp. 207–248. World Scientific Publishing, Singapore (1998)
Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice. In: Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV’07), pp. 1–8, Rio de Janeiro, Brazil, October 2007. IEEE
Unser, M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)
Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 90–94 (1998)
Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, pp. 691–698, June 2003
Varma, M., Zisserman, A.: Unifying statistical texture classification frameworks. Image Vis. Comput. 22(14), 1175–1183 (2004)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1–2), 61–81 (2005)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)
Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: Proceedings of the 13th International Conference on Computer Vision (ICCV2011), pp. 603–610. Barcelona, November 2011
Wechsler, H.: Texture analysis - A survey. Signal Process. 2(3), 271–282 (1980)
Wu, C.-M., Chen, Y.-C.: Statistical feature matrix for texture analysis. CVGIP: graphical Models Image Process. 54(5), 407–419 (1992)
Xie, X., Mirmehdi, M.: A galaxy of texture features. In Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 375–406. Imperial College Press, London (2008)
Xie, J., Zhang, L., You, J., Zhang, D.: Texture classification via patch-based sparse texton learning. In: Proceedings of the International Conference on Image Processing, pp. 2737–2740 (2010)
Xu, B., Gong, P., Seto, E., Spear, R.: Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image. Photogram. Eng. Remote Sens. 69(5), 529–536 (2003)
Zabih, R., Woodfill J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the 3rd European Conference on Computer Vision (ECCV 1994), pp. 151–158, Springer-Verlag, Stockholm, May 1994
Zhang, H., Rahmani, R., Cholleti, S. R., Goldman, S. A.: Local image representations using pruned salient points with applications to CBIR. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, Santa Barbara, October 2006
Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)
Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178(22), 4314–4325 (2008)
Acknowledgments
This work was supported by the Spanish Government under projects no. TRA2011-29454-C03-01 and CTM2010-16573.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bianconi, F., Fernández, A. (2014). A Unifying Framework for LBP and Related Methods. In: Brahnam, S., Jain, L., Nanni, L., Lumini, A. (eds) Local Binary Patterns: New Variants and Applications. Studies in Computational Intelligence, vol 506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39289-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-39289-4_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39288-7
Online ISBN: 978-3-642-39289-4
eBook Packages: EngineeringEngineering (R0)