Skip to main content

Introduction to Local Binary Patterns: New Variants and Applications

  • Chapter
  • First Online:
Local Binary Patterns: New Variants and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 506))

Abstract

This chapter provides an introduction to Local Binary Patterns (LBP) and important new variants. Some issues with LBP variants are discussed. A summary of the chapters on LBP is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pietikä Pietikainen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer, London (2011)

    Google Scholar 

  2. Tuceryan, M., Jain, A.K.: Texture analysis. C.H. Chen, L.F. Pau, P.S.P. Wang, (eds.) The handbook of pattern recognition and computer vision, pp. 207–248: World Scientific Publishing Co., Singapore (1998)

    Google Scholar 

  3. Zucker, S.W.: Towards a model of texture. Comput. Graph. Image Process. 5, 190–202 (1976)

    Article  Google Scholar 

  4. Sklansky, J.: Image segmentation and feature extraction. IEEE Trans. Syst. Man Cybern. SMC-8, 237–247 (1978)

    Google Scholar 

  5. Coggins, J. M.:A framework for texture analysis based on spatial filtering, Ph.D. Thesis, Computer Science Department, Michigan State University, East Lansing, (1982)

    Google Scholar 

  6. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  7. Tamura, H., Mori, S., Yamawaki, Y.: Textural features corresponding to visul perception, IEEE Trans. Syst. Man Cybern.SMC-8, 460–473 (1978)

    Google Scholar 

  8. Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 25–39 (1983)

    Article  Google Scholar 

  9. Thyagarajan, K. S., Nguyen, T., Persons, C.: A maximum likelihood approach to texture classification using wavelet transform. in IEEE International Conference on Image Processing (1994)

    Google Scholar 

  10. Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  11. Liua, G.-H., Zhang, L., Hou, Y.-K., Li, Z-y, Yang, J.-Y.: Image retrieval based on multi-texton histogram. Pattern Recogn. 43(7), 2380–2389 (2010)

    Article  Google Scholar 

  12. Ahonen, T., Pietikäinen, M.: Image description using joint distribution of filter bank responses. Pattern Recogn. Lett. 30(4), 368–376 (2009)

    Article  Google Scholar 

  13. Unay, D., Ekin, A.: Intensity versus texture for medical image search and retrieval. In 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 241–244 ( 2008)

    Google Scholar 

  14. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Anal. Model. Faces Gestures, LNCS 4778, 168–182 (2007)

    Article  Google Scholar 

  15. Keramidas, E. G., Iakovidis, D. K., Maroulis, D., Dimitropoulos, N.: Thyroid texture representation via noise resistant image features. In: Twenty-First IEEE International Symposium on Computer-Based Medical Systems (CBMS 2008), pp. 560–565 (2008)

    Google Scholar 

  16. Paci, M., Nanni, L., Lathi, A., Aalto-Setälä, K., Hyttinen, J., Severi, S.: Non-binary coding for texture descriptors in sub-cellular and stem cell image classification. Curr. Bioinform. 8(2) (2013)

    Google Scholar 

  17. Nanni, L., Lumini, A.: RegionBoost learning for 2D+3D based face recognition. Pattern Recogn. Lett. 28(15), 2063–2070 (2007)

    Article  Google Scholar 

  18. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041(2006)

    Google Scholar 

  19. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  20. He, D., Wang, L.: Texture unit, texture spectrum and texture analysis. In: Geoscience and Remote Sensing, Symposium (1989)

    Google Scholar 

  21. He, D., Wang, L.: Texture features based on texture spectrum. Pattern Recognit. 24(5), 391–399 (1991)

    Article  Google Scholar 

  22. Zabih, R., Wood, J.: Non-parametric local transforms for computing visual correspondence. In: European Conference on Computer Vision (1994)

    Google Scholar 

  23. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: 12th IAPR International Conference (1994)

    Google Scholar 

  24. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. EE Trans. Image Process. vol. ePub (2010)

    Google Scholar 

  25. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  Google Scholar 

  26. Akhloufi, M., and Bendada, A.: Locally adaptive texture features for multispectral face recognition. In: IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 3308–314 (2010)

    Google Scholar 

  27. Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)

    Article  Google Scholar 

  28. Chen, J., Zhao, G., Pietikäinen, M.: An improved local descriptor and threshold learning for unsupervised dynamic texture segmentation. In: ICCV Workshop on Machine Learning for Vision-based Motion, Analysis, pp. 460–467 (2009)

    Google Scholar 

  29. Ojansivu, V., and Heikkila, J.: Blur insensitive texture classification using local phase quantization. In: ICISP, pp. 236–243 (2008)

    Google Scholar 

  30. Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Trans. Image Process. 19, 1548–1557 (2010)

    Article  MathSciNet  Google Scholar 

  31. Nanni, L., Lumini, A., Brahnam, S.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)

    Article  Google Scholar 

  32. Nanni, L., Paci, M., Brahnam, S., Ghidoni, S., Menegatti, E.: Virus image classification using different texture descriptors, in The 14th International Conference on Bioinformatics and Computational Biology (BIOCOMP’13). Las Vegas, NV (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheryl Brahnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brahnam, S., Jain, L.C., Lumini, A., Nanni, L. (2014). Introduction to Local Binary Patterns: New Variants and Applications. In: Brahnam, S., Jain, L., Nanni, L., Lumini, A. (eds) Local Binary Patterns: New Variants and Applications. Studies in Computational Intelligence, vol 506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39289-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39289-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39288-7

  • Online ISBN: 978-3-642-39289-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics