Skip to main content

Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory

  • Chapter
Erdős Centennial

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 25))

Abstract

It might be argued that elementary number theory began with Pythagoras who noted two-and-a-half millennia ago that 220 and 284 form an amicable pair. That is, if s(n) denotes the sum of the proper divisors of n (“proper divisor” means dn and 1 ≤ d < n), then

$$s(220) = 284\quad and\quad s(284) = 220.$$

When faced with remarkable examples such as this it is natural to wonder how special they are. Through the centuries mathematicians tried to find other examples of amicable pairs, and they did indeed succeed. But is there a formula? Are there infinitely many? In the first millennium of the common era, Thâbit ibn Qurra came close with a formula for a subfamily of amicable pairs, but it is far from clear that his formula gives infinitely many examples and probably it does not.

The authors would like to thank Enrique Treviño and the anonymous referee for their helpful suggestions. The second author was supported in part by NSF grant DMS-1001180.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), 703–722.

    Article  MathSciNet  Google Scholar 

  2. F. Behrend, Über numeri abundantes. I, Sitzgsber. Akad. Berlin (1932), 322–328.

    Google Scholar 

  3. -, Über numeri abundantes. II, Sitzgsber. Akad. Berlin (1933), 289–293.

    Google Scholar 

  4. E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France 16 (1888), 128–129.

    MathSciNet  Google Scholar 

  5. H. Davenport, Über numeri abundantes, Sitzgsber. Akad. Berlin (1933), 830–837.

    Google Scholar 

  6. M. Deléglise, Bounds for the density of abundant integers, Experiment. Math. 7 (1998), 137–143.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Q.J. Math. 44 (1913), 264–296.

    MATH  Google Scholar 

  8. P. Erdős, On primitive abundant numbers, J. London Math. Soc. 10 (1935), 49–58.

    Google Scholar 

  9. -, On the density of some sequences of numbers, J. London Math. Soc. 10 (1935), 120–125.

    Article  Google Scholar 

  10. -, On the normal number of prime factors of p — 1 and some related problems concerning Euler’s φ-function, Quart. J. Math. Oxford Ser. 6 (1935), 205–213.

    Article  Google Scholar 

  11. -, On the density of some sequences of numbers, II, J. London Math. Soc. 12 (1937), 7–11.

    Google Scholar 

  12. -, On the density of some sequences of numbers, III, J. London Math. Soc. 13 (1938), 119–127.

    Article  Google Scholar 

  13. -, On the converse of Fermat’s theorem, Amer. Math. Monthly 56 (1949), 623–624.

    Article  MathSciNet  Google Scholar 

  14. -, On almost primes, Amer. Math. Monthly 57 (1950), 404–407.

    Article  MathSciNet  Google Scholar 

  15. -, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111.

    MathSciNet  Google Scholar 

  16. -, On perfect and multiply perfect numbers, Ann. Mat. Pura Appl. (4) 42 (1956), 253–258.

    Article  Google Scholar 

  17. -, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206.

    MathSciNet  Google Scholar 

  18. -, Remarks on number theory, II. Some problems on the σ function, Acta Arith. 5 (1959), 171–177.

    MathSciNet  Google Scholar 

  19. On the sumΣd|2 n-1d-1, Actes du Congrés International des Mathé-maticiens (Nice, 1970), Tome 3, and Israel J. Math. 9 (1971), 43–48.

    Google Scholar 

  20. -, Über die Zahlen der form σ (n) — n undn-φ(n), Elem. Math. 28 (1973), 83–86.

    MathSciNet  Google Scholar 

  21. -, On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976), no. 135, 641–645.

    Google Scholar 

  22. P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory (Allerton Park, IL, 1989), Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 165–204.

    Chapter  Google Scholar 

  23. P. Erdős and R. R. Hall, On the values of Euler’s φ-function, Acta Arith. 22 (1973), 201–206.

    MathSciNet  Google Scholar 

  24. -, Distinct values of Euler’s φ-function, Mathematika 23 (1976), 1–3.

    Article  MathSciNet  Google Scholar 

  25. P. Erdős, P. Kiss, and C. Pomerance, On the prime divisors of Mersenne numbers, Acta Arith. 57 (1991), 267–281.

    MathSciNet  Google Scholar 

  26. P. Erdős and C. Pomerance, On the number of false witnesses for a composite number, Math. Comp. 46 (1986), 259–279.

    MathSciNet  Google Scholar 

  27. P. Erdős, C. Pomerance, and E. Schmutz, Carmichael’s lambda function, Acta Arith. 58 (1991), 363–385.

    MathSciNet  Google Scholar 

  28. P. Erdős and G. J. Rieger, Ein Nachtrag über befreundete Zahlen, J. Reine Angew. Math. 273 (1975), 220.

    MathSciNet  Google Scholar 

  29. P. Erdős and S. S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24 (1980), 104–112.

    MathSciNet  Google Scholar 

  30. P. Erdös and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713–721.

    Article  MathSciNet  Google Scholar 

  31. K. Ford, The distribution of totients, Ramanujan J. 2 (1998), 67–151. (Updated version on the author’s web page.)

    Article  MATH  MathSciNet  Google Scholar 

  32. K. Ford, Sieving by very thin sets of primes and Pratt trees with missing primes, preprint, 2012, arXiv:1212.3498 au][math.NT], IMRN, to appear.

    Google Scholar 

  33. K. Ford, F. Luca, and C. Pomerance, Common values of the arithmetic functions ϕ and σ, Bull. Lond. Math. Soc. 42 (2010), 478–488.

    Article  MATH  MathSciNet  Google Scholar 

  34. K. Ford and P. Pollack, On common values of φ(n) and σ(m), I, Acta Math. Hungarica 133 (2011), 251–271.

    Article  MATH  MathSciNet  Google Scholar 

  35. -, On common values of φ(n) and σ(m), II, Algebra Number Theory 6 (2012), 1669–1696.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Granville and C. Pomerance, Two contradictory conjectures concerning Carmichael numbers, Math. Comp. 71 (2001), 883–908.

    Article  MathSciNet  Google Scholar 

  37. N. Harland, The number of iterates of the Carmichael lambda function required to reach 1, preprint, 2012, arXiv:1203.4791 [math.NT].

    Google Scholar 

  38. B. Hornfeck, Zur Dichte der Menge der vollkommenen Zahlen, Arch. Math. (Basel) 6 (1955), 442–443.

    Article  MATH  MathSciNet  Google Scholar 

  39. B. Hornfeck and E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann. 133 (1957), 431–438.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. J. Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Math Z. 61 (1954), 180–185.

    Article  MATH  MathSciNet  Google Scholar 

  41. -, Über die Verteilung der vollkommenen Zahlen und allgemeinerer Zahlenmengen, Math. Ann. 132 (1957), 442–450.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Kobayashi, On the density of abundant numbers, Ph.D. thesis, Dartmouth College, 2010.

    Google Scholar 

  43. M. Kobayashi, P. Pollack, and C. Pomerance, On the distribution of sociable numbers, J. Number Theory 129 (2009), 1990–2009.

    Article  MATH  MathSciNet  Google Scholar 

  44. H. Maier and C. Pomerance, On the number of distinct values of Euler’s ϕ-function, Acta Arith. 49 (1988), 263–275.

    MATH  MathSciNet  Google Scholar 

  45. J. Perrott, Sur une proposition empirique énoncée au Bulletin, Bull. Soc. Math. France 17 (1889), 155–156.

    MATH  MathSciNet  Google Scholar 

  46. S. S. Pillai, On some functions connected with φ(n), Bull. Amer. Math. Soc. 35 (1929), 832–836.

    Article  MATH  MathSciNet  Google Scholar 

  47. P. Pollack, A remark on sociable numbers of odd order, J. Number Theory 130 (2010), no. 8, 1732–1736.

    Article  MATH  MathSciNet  Google Scholar 

  48. -, On the greatest common divisor of a number and its sum of divisors, Michigan Math. J. 60 (2011), no. 1, 199–214.

    Article  MATH  MathSciNet  Google Scholar 

  49. -, Quasi-amicable numbers are rare, J. Integer Seq. 14 (2011), no. 5, Article 11.5.2, 13 pages.

    Google Scholar 

  50. P. Pollack and C. Pomerance, Prime-perfect numbers, Integers 12A (2012), article A14, 19 pages.

    Google Scholar 

  51. C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222.

    MathSciNet  Google Scholar 

  52. -, On the distribution of amicable numbers. II, J. Reine Angew. Math. 325 (1981), 183–188.

    MATH  MathSciNet  Google Scholar 

  53. -, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587–593.

    Google Scholar 

  54. G. J. Rieger, Bemerkung zu einem Ergebnis von Erdős über befreundete Zahlen, J. Reine Angew. Math. 261 (1973), 157–163.

    MATH  MathSciNet  Google Scholar 

  55. H. Salie, Über die Dichte abundanter Zahlen, Math. Nachr. 14 (1955), 39–46.

    Article  MATH  MathSciNet  Google Scholar 

  56. I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928), 171–199.

    Article  MATH  MathSciNet  Google Scholar 

  57. -, On asymptotic distributions of arithmetical functions, Trans. Amer. Math. Soc. 39 (1936), 315–330.

    Article  MathSciNet  Google Scholar 

  58. S. S. Wagstaff, Jr., Divisors of Mersenne numbers, Math. Comp. 83 (1983), 385–397.

    Article  MathSciNet  Google Scholar 

  59. C. R. Wall, Density bounds for the sum of divisors function, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1971), Lecture Notes in Math., vol. 251, Springer, Berlin, 1972, pp. 283–287.

    Chapter  Google Scholar 

  60. E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959), 316–318.

    Article  MATH  MathSciNet  Google Scholar 

  61. P. Zimmerman, Aliquot sequences, internet resource, http://www.loria.fr/ zimmerma/records/aliquot.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Pollack, P., Pomerance, C. (2013). Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_19

Download citation

Publish with us

Policies and ethics