Abstract
It might be argued that elementary number theory began with Pythagoras who noted two-and-a-half millennia ago that 220 and 284 form an amicable pair. That is, if s(n) denotes the sum of the proper divisors of n (“proper divisor” means d │ n and 1 ≤ d < n), then
When faced with remarkable examples such as this it is natural to wonder how special they are. Through the centuries mathematicians tried to find other examples of amicable pairs, and they did indeed succeed. But is there a formula? Are there infinitely many? In the first millennium of the common era, Thâbit ibn Qurra came close with a formula for a subfamily of amicable pairs, but it is far from clear that his formula gives infinitely many examples and probably it does not.
The authors would like to thank Enrique Treviño and the anonymous referee for their helpful suggestions. The second author was supported in part by NSF grant DMS-1001180.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), 703–722.
F. Behrend, Über numeri abundantes. I, Sitzgsber. Akad. Berlin (1932), 322–328.
-, Über numeri abundantes. II, Sitzgsber. Akad. Berlin (1933), 289–293.
E. Catalan, Propositions et questions diverses, Bull. Soc. Math. France 16 (1888), 128–129.
H. Davenport, Über numeri abundantes, Sitzgsber. Akad. Berlin (1933), 830–837.
M. Deléglise, Bounds for the density of abundant integers, Experiment. Math. 7 (1998), 137–143.
L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Q.J. Math. 44 (1913), 264–296.
P. Erdős, On primitive abundant numbers, J. London Math. Soc. 10 (1935), 49–58.
-, On the density of some sequences of numbers, J. London Math. Soc. 10 (1935), 120–125.
-, On the normal number of prime factors of p — 1 and some related problems concerning Euler’s φ-function, Quart. J. Math. Oxford Ser. 6 (1935), 205–213.
-, On the density of some sequences of numbers, II, J. London Math. Soc. 12 (1937), 7–11.
-, On the density of some sequences of numbers, III, J. London Math. Soc. 13 (1938), 119–127.
-, On the converse of Fermat’s theorem, Amer. Math. Monthly 56 (1949), 623–624.
-, On almost primes, Amer. Math. Monthly 57 (1950), 404–407.
-, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111.
-, On perfect and multiply perfect numbers, Ann. Mat. Pura Appl. (4) 42 (1956), 253–258.
-, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206.
-, Remarks on number theory, II. Some problems on the σ function, Acta Arith. 5 (1959), 171–177.
On the sumΣd|2 n-1d-1, Actes du Congrés International des Mathé-maticiens (Nice, 1970), Tome 3, and Israel J. Math. 9 (1971), 43–48.
-, Über die Zahlen der form σ (n) — n undn-φ(n), Elem. Math. 28 (1973), 83–86.
-, On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976), no. 135, 641–645.
P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory (Allerton Park, IL, 1989), Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 165–204.
P. Erdős and R. R. Hall, On the values of Euler’s φ-function, Acta Arith. 22 (1973), 201–206.
-, Distinct values of Euler’s φ-function, Mathematika 23 (1976), 1–3.
P. Erdős, P. Kiss, and C. Pomerance, On the prime divisors of Mersenne numbers, Acta Arith. 57 (1991), 267–281.
P. Erdős and C. Pomerance, On the number of false witnesses for a composite number, Math. Comp. 46 (1986), 259–279.
P. Erdős, C. Pomerance, and E. Schmutz, Carmichael’s lambda function, Acta Arith. 58 (1991), 363–385.
P. Erdős and G. J. Rieger, Ein Nachtrag über befreundete Zahlen, J. Reine Angew. Math. 273 (1975), 220.
P. Erdős and S. S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24 (1980), 104–112.
P. Erdös and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713–721.
K. Ford, The distribution of totients, Ramanujan J. 2 (1998), 67–151. (Updated version on the author’s web page.)
K. Ford, Sieving by very thin sets of primes and Pratt trees with missing primes, preprint, 2012, arXiv:1212.3498 au][math.NT], IMRN, to appear.
K. Ford, F. Luca, and C. Pomerance, Common values of the arithmetic functions ϕ and σ, Bull. Lond. Math. Soc. 42 (2010), 478–488.
K. Ford and P. Pollack, On common values of φ(n) and σ(m), I, Acta Math. Hungarica 133 (2011), 251–271.
-, On common values of φ(n) and σ(m), II, Algebra Number Theory 6 (2012), 1669–1696.
A. Granville and C. Pomerance, Two contradictory conjectures concerning Carmichael numbers, Math. Comp. 71 (2001), 883–908.
N. Harland, The number of iterates of the Carmichael lambda function required to reach 1, preprint, 2012, arXiv:1203.4791 [math.NT].
B. Hornfeck, Zur Dichte der Menge der vollkommenen Zahlen, Arch. Math. (Basel) 6 (1955), 442–443.
B. Hornfeck and E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann. 133 (1957), 431–438.
H. J. Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Math Z. 61 (1954), 180–185.
-, Über die Verteilung der vollkommenen Zahlen und allgemeinerer Zahlenmengen, Math. Ann. 132 (1957), 442–450.
M. Kobayashi, On the density of abundant numbers, Ph.D. thesis, Dartmouth College, 2010.
M. Kobayashi, P. Pollack, and C. Pomerance, On the distribution of sociable numbers, J. Number Theory 129 (2009), 1990–2009.
H. Maier and C. Pomerance, On the number of distinct values of Euler’s ϕ-function, Acta Arith. 49 (1988), 263–275.
J. Perrott, Sur une proposition empirique énoncée au Bulletin, Bull. Soc. Math. France 17 (1889), 155–156.
S. S. Pillai, On some functions connected with φ(n), Bull. Amer. Math. Soc. 35 (1929), 832–836.
P. Pollack, A remark on sociable numbers of odd order, J. Number Theory 130 (2010), no. 8, 1732–1736.
-, On the greatest common divisor of a number and its sum of divisors, Michigan Math. J. 60 (2011), no. 1, 199–214.
-, Quasi-amicable numbers are rare, J. Integer Seq. 14 (2011), no. 5, Article 11.5.2, 13 pages.
P. Pollack and C. Pomerance, Prime-perfect numbers, Integers 12A (2012), article A14, 19 pages.
C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222.
-, On the distribution of amicable numbers. II, J. Reine Angew. Math. 325 (1981), 183–188.
-, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587–593.
G. J. Rieger, Bemerkung zu einem Ergebnis von Erdős über befreundete Zahlen, J. Reine Angew. Math. 261 (1973), 157–163.
H. Salie, Über die Dichte abundanter Zahlen, Math. Nachr. 14 (1955), 39–46.
I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928), 171–199.
-, On asymptotic distributions of arithmetical functions, Trans. Amer. Math. Soc. 39 (1936), 315–330.
S. S. Wagstaff, Jr., Divisors of Mersenne numbers, Math. Comp. 83 (1983), 385–397.
C. R. Wall, Density bounds for the sum of divisors function, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1971), Lecture Notes in Math., vol. 251, Springer, Berlin, 1972, pp. 283–287.
E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959), 316–318.
P. Zimmerman, Aliquot sequences, internet resource, http://www.loria.fr/ zimmerma/records/aliquot.html.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 János Bolyai Mathematical Society and Springer-Verlag
About this chapter
Cite this chapter
Pollack, P., Pomerance, C. (2013). Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-39286-3_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39285-6
Online ISBN: 978-3-642-39286-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)