Skip to main content

Paul Erdős and the Difference of Primes

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 25))

Abstract

In the present work we discuss several problems concerning the difference of primes, primarily regarding the difference of consecutive primes. Most of them were either initiated by Paul Erdős (sometimes with coauthors), or were raised ahead of Erdős; nevertheless he was among those who reached very important results in them (like the problem of the large and small gaps between consecutive primes).

Supported by OTKA grants K72731, K100291, NK 104183 and ERC-AdG. 228005.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Backlund, Über die Differenzen zwischen den Zahlen, die zu den ersten n Primzahlen teilerfremd sind. Commentationes in honorem E. L. Lindelöf. Annales Acad. Sci. Fenn. 32 (1929), Nr. 2, 1–9.

    Google Scholar 

  2. R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes, II. Proc. London Math. Soc.(3) 83 (2001), no. 3, 532–562.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bombieri, On the large sieve. Mathematika 12 (1965), 201–225.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bombieri, H. Davenport, Small differences between prime numbers. Proc. Roy. Soc. Ser. A 293 (1966), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Bourgain, On triples in arithmetic progressions. Geom. Funct. Anal. 9 (1999), no. 5, 968–984.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bourgain, Roth’s theorem on progressions revisited. J. Anal. Math. 104 (2008), 155–192.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Brauer, H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre. Sber. Berliner Math. Ges. 29 (1930), 116–125.

    Google Scholar 

  8. Chen Jing Run, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386 (Chinese).

    Google Scholar 

  9. Chen Jing Run, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157–176.

    MATH  MathSciNet  Google Scholar 

  10. J. G. van der Corput, Sur l’hypothése de Goldbach pour presque tous les nombres pairs. Acta Arith. 2 (1937), 266–290.

    Google Scholar 

  11. J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten. Math. Ann. 116 (1939), 1–50.

    Article  MathSciNet  Google Scholar 

  12. H. Cramér, Prime numbers and probability. 8. Skand. Math. Kongr., Stockholm, 1935, 107–115.

    Google Scholar 

  13. H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23–46.

    Google Scholar 

  14. N. G. Čudakov, On the density of the set of even numbers which are not representable as a sum of two primes. Izv. Akad. Nauk. SSSR 2 (1938), 25–40.

    Google Scholar 

  15. L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. (2), 33 (1904), 155–161.

    Google Scholar 

  16. P. D. T. A. Elliott, H. Halberstam, A conjecture in prime number theory. Symposia Mathematica Vol. 4 (1970) (INDAM, Rome, 1968/69), 59–72, Academic Press, London.

    Google Scholar 

  17. P. Erdős, On the difference of consecutive primes. Quart. J. Math. Oxford ser. 6 (1935), 124–128.

    Article  Google Scholar 

  18. P. Erdős, The difference of consecutive primes. Duke Math. J. 6 (1940), 438–441.

    Article  MathSciNet  Google Scholar 

  19. P. Erdős, On the difference of consecutive primes. Bull. Amer. Math. Soc. (1948), 885–889.

    Google Scholar 

  20. P. Erdős, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 374–384.

    Article  MathSciNet  Google Scholar 

  21. P. Erdős, Problems and results on the differences of consecutive primes. Publ. Math. Debrecen 1 (1949), 33–37.

    MathSciNet  Google Scholar 

  22. P. Erdős, Some problems on the distribution of prime numbers. Teoria dei Numeri, Math. Congr. Varenna, 1954, 8 pp., 1955.

    Google Scholar 

  23. P. Erdős, Some problems on Consecutive Prime Numbers. Mathematika 19 (1972), 91–95.

    Article  MathSciNet  Google Scholar 

  24. P. Erdős, Résultats et problèmes en théorie des nombres. Séminaire Delonge-Pisot-Poitou (14e annèe: 1972/73), Théorie des nombres, Fasc. 2. Exp. No. 24, 7 pp. Sécretariat Mathématique, Paris, 1973.

    Google Scholar 

  25. P. Erdős, Problems and results on number theoretic properties of consecutive integers and related questions. Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), Congress Numer. XVI, pp. 25–44, Utilitas Math., Winnipeg, Man., 1976.

    Google Scholar 

  26. P. Erdős, Problems in number theory and combinatorics. Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976), Congress. Numer. XVIII, pp. 35–58, Utilitas Math., Winnipeg, Man., 1977.

    Google Scholar 

  27. P. Erdős, Some personal reminiscences of the mathematical work of Paul Turán. Acta Arith. 37 (1980), 3–8.

    Google Scholar 

  28. P. Erdős, Many old and on some new problems of mine in number theory, Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Univ Manitoba, Winnipeg, Man., 1980), Congress. Numer. 30 (1981), 3–27.

    Google Scholar 

  29. P. Erdős, Some problems on Number Theory, in: Analytic and elementary number theory (Marseille, 1983). Publ. Math. Orsay, 86-1, pp. 53–67, Univ. Paris XI, Orsay, 1986.

    Google Scholar 

  30. P. Erdős, L. Mirsky, The distribution of values of the divisor function d(n). Proc. London Math. Soc. (3) 2 (1952), 257–271.

    Article  MathSciNet  Google Scholar 

  31. P. Erdős, P. Turán, On some sequences of integers. J. London Math. Soc. 11 (1936), 261–264.

    Article  Google Scholar 

  32. P. Erdős, P. Turán, On some new questions on the distribution of prime numbers. Bull. Amer. Math. Soc. 54 (1948), 371–378.

    Article  MathSciNet  Google Scholar 

  33. T. Estermann, On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc. (2) 44 (1938), 307–14.

    Article  MathSciNet  Google Scholar 

  34. L. Euler, C. Goldbach, Briefwechsel 1729–1764. Akademie Verlag, Berlin, 1965.

    Google Scholar 

  35. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. A. Goldston, C. Yıldırım, Higher correlations of divisor sums related to primes. III. Small gaps between primes. Proc. London Math. Soc. (3) 95 (2007), no. 3, 653–686.

    Article  MATH  Google Scholar 

  37. D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples III: On the difference p n+v−pn. Funct. Approx. Comment. Math. 35 (2006), 79–89.

    Article  MATH  MathSciNet  Google Scholar 

  38. D. A. Goldston, J. Pintz, C. Yıldırım, Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862.

    Article  MATH  MathSciNet  Google Scholar 

  39. D. A. Goldston, J. Pintz, C. Yıldırım, Primes in tuples. II. Acta Math. 204 (2010), no. 1, 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between products of two primes. Proc. London Math. Soc. (3) 98 (2009), no. 3, 741–774.

    Article  MATH  Google Scholar 

  41. D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers. Int. Math. Res. Not. IMRN 2011, no. 7, 1439–1450.

    Google Scholar 

  42. W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 (1998), no. 3, 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  43. W. T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), no. 3, 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  44. A. Granville, Unexpected irregularities in the distribution of prime numbers, in: Proceedings of the International Congress of Mathematicians (Zürich, 1994). Vol. 1, 2, 388–399, Birkhäuser, Basel, 1995.

    Google Scholar 

  45. A. Granville, Harald Cramér and the Distribution of Prime Numbers. Scand. Actuarial J. No. 1 (1995), 12–28.

    Google Scholar 

  46. G. Greaves, Sieves in Number Theory. Springer, 2001.

    Google Scholar 

  47. B. Grein, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2) 167 (2008), no. 2, 481–547.

    Article  MathSciNet  Google Scholar 

  48. G. H. Hardy, J. E. Littlewood, Some problems of ‘Partitio Numerorum’, III: On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. H. Hardy, J. E. Littlewood, Some problems of ‘Partitio Numerorum’, V: A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc. (2) 22 (1924), 46–56.

    Article  MathSciNet  Google Scholar 

  50. D. R. Heath-Brown, Three primes and an almost prime in arithmetic progression. J. London Math. Soc. (2) 23 (1981), no. 3, 396–414.

    Article  MATH  MathSciNet  Google Scholar 

  51. D. R. Heath-Brown, The divisor function at consecutive integers. Mathematika 31 (1984), 141–149.

    Article  MATH  MathSciNet  Google Scholar 

  52. D. R. Heath-Brown, Integer sets containing no arithmetic progressions. J. London Math. Soc. (2) 35 (1987), no. 3, 385–394.

    Article  MATH  MathSciNet  Google Scholar 

  53. A. J. Hildebrand, H. Maier, Irregularities in the distribution of primes in short intervals. J. Reine Angew. Math. 397 (1989), 162–193.

    MATH  MathSciNet  Google Scholar 

  54. G. Hoheisel, Primzahlprobleme in der Analysis. SBer. Preuss. Akad. Wiss., Berlin (1930), 580–588.

    Google Scholar 

  55. M. N. Huxley, On the differences of primes in arithmetical progressions. Acta Arith. 15 (1968/69), 367–392.

    MathSciNet  Google Scholar 

  56. M. N. Huxley, Small differences between consecutive primes II. Mathematika 24 (1977), 142–152.

    Article  MathSciNet  Google Scholar 

  57. Chaohua Jia, Almost all short intervals containing prime numbers. Acta Arith. 76 (1996), 21–84.

    MathSciNet  Google Scholar 

  58. J. Kaczorowski, A. Perelli, J. Pintz, A note on the exceptional set for Goldbach’s problem in short intervals. Monatsh. Math. 116, no. 3-4 (1993), 275–282. Corrigendum: ibid. 119 (1995), 215–216.

    Article  MATH  MathSciNet  Google Scholar 

  59. I. Kátai, A remark on a paper of Ju. V. Linnik. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99–100.

    MATH  Google Scholar 

  60. L. Kronecker, Vorlesungen über Zahlentheorie, I. p. 68, Teubner, Leipzig, 1901.

    Google Scholar 

  61. E. Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresber. Deutsche Math. Ver. 21 (1912), 208–228. [Proc. 5th Internat. Congress of Math., I, 93–108, Cambridge 1913; Collected Works, 5, 240–255, Thales Verlag.]

    MATH  Google Scholar 

  62. Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem. Izv. Akad. Nauk. SSSR 16 (1952), 503–520 (Russian).

    MATH  MathSciNet  Google Scholar 

  63. H. Maier, Chains of large gaps between consecutive primes. Adv. in Math. 39 (1981), no. 3, 257–269.

    Article  MATH  MathSciNet  Google Scholar 

  64. H. Maier, Small differences between prime numbers. Michigan Math. J. 35 (1988), 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  65. H. Maier, C. Pomerance, Unusually large gaps between consecutive primes. Trans. Amer. Math. Soc. 322 (1990), 201–237.

    Article  MATH  MathSciNet  Google Scholar 

  66. E. Maillet, L’intermédiaire des math. 12 (1905), p. 108.

    Google Scholar 

  67. W. Narkiewicz, The Development of Prime Number Theory. From Euclid to Hardy and Littlewood. Springer, 2000.

    Google Scholar 

  68. J. Pintz, Very large gaps between consecutive primes. J. Number Th. 63 (1997), 286–301.

    Article  MATH  MathSciNet  Google Scholar 

  69. J. Pintz, Cramér vs. Cramér. On Cramér’s probabilistic model for primes. Funct. Approx. Comment. Math. 37 (2007), part 2, 361–376.

    Article  MATH  MathSciNet  Google Scholar 

  70. J. Pintz, Are there arbitrarily long arithmetic progressions in the sequence of twin primes? An irregular mind, Bolyai Soc. Math. Stud. 21, Springer, 2010, pp. 525–559.

    Article  MathSciNet  Google Scholar 

  71. J. Pintz, Are there arbitrarily long arithmetic progressions in the sequence of twin primes? II. Proceedings of the Steklov Institute 276 (2012), 227–232.

    MathSciNet  Google Scholar 

  72. A. de Polignac, Six propositions arithmologiques déduites de crible d’Ératosthene. Nouv. Ann. Math. 8 (1849), 423–429.

    Google Scholar 

  73. R. A. Rankin, The difference between consecutive prime numbers. J. London Math. Soc. 13 (1938), 242–244.

    Article  MathSciNet  Google Scholar 

  74. R. A. Rankin, The difference between consecutive prime numbers. II. Proc. Cambridge Philos. Soc. 36 (1940), 255–266.

    Article  MathSciNet  Google Scholar 

  75. R. A. Rankin, The difference between consecutive primes. III. J. London Math. Soc. 22 (1947), 226–230.

    Article  MATH  MathSciNet  Google Scholar 

  76. R. A. Rankin, The difference between consecutive prime numbers, V. Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 331–332.

    Article  MathSciNet  Google Scholar 

  77. G. Ricci, Ricerche aritmetiche sui polinomi, II. (Intorno a una proposizione non vera di Legendre). Rend. Palermo 58 (1934), 190–208.

    Article  Google Scholar 

  78. G. Ricci, La differenza di numeri primi consecutivi. Rendiconti Sem. Mat. Univ. e Politecnico Torino 11 (1952), 149–200. Corr. ibidem 12 (1953), p. 315.

    Google Scholar 

  79. G. Ricci, Sull’andamento della differenza di numeri primi consecutivi. Riv. Mat. Univ. Parma 5 (1954), 3–54.

    MathSciNet  Google Scholar 

  80. K. F. Roth, Sur quelques ensembles d’entiers. C.R. Acad. Sci. Paris 234 (1952), 388–390.

    MATH  MathSciNet  Google Scholar 

  81. K. F. Roth, On certain sets of integers. J. London Math. Soc. 28 (1953), 104–109.

    Article  MATH  MathSciNet  Google Scholar 

  82. T. Sanders, On Roth’s theorem on progressions. Ann. of Math. (2) 174 (2011), no. 1, 619–636.

    Article  MATH  MathSciNet  Google Scholar 

  83. A. Schönhage, Eine Bemerkung zur Konstruktion grosser Primzahllücken. Arch. Math. Basel 14 (1963), 29–30.

    Article  MATH  MathSciNet  Google Scholar 

  84. A. Selberg, An elementary proof of the prime-number theorem. Ann. of Math. (2) 50 (1949), 305–313.

    Article  MATH  MathSciNet  Google Scholar 

  85. J.-C. Schlage-Puchta, The equation ω(n) = ω(n + 1). Mathematika 50 (2003), no. 1-2, 99–101 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  86. C. Spiro, Thesis. Urbana, 1981.

    Google Scholar 

  87. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression. 1970 Number Theory (Colloq. János Bolyai Math. Soc. Debrecen, 1968), pp. 197–204, North-Holland, Amsterdam.

    Google Scholar 

  88. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  89. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  90. E. Szemerédi, Regular partitions of graphs. Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976) Colloq. Internat. CNRS 260, CNRS, Paris, 1978, pp. 399–401.

    Google Scholar 

  91. E. Szemerédi, Integer sets containing no arithmetic progressions. Acta Math. Hungar. 56 (1990), no. 1-2, 155–158.

    Article  MATH  MathSciNet  Google Scholar 

  92. A. I. Vinogradov, The density hypothesis for Dirichlet L-series. Izv. Akad. Nauk. SSSR 29 (1965), 903–934 (Russian). Corr.: ibidem, 30 (1966), 719–720.

    MATH  Google Scholar 

  93. I. M. Vinogradov, Representation of an odd number as a sum of three prime numbers. Doklady Akad. Nauk. SSSR 15 (1937), 291–294 (Russian).

    Google Scholar 

  94. I. M. Vinogradov, Special Variants of the Method of Trigonometric Sums. Nauka, Moskva, 1976 (Russian).

    Google Scholar 

  95. Wang Yuan, Xie Sheng-gang, Yu Kun-rui, Remarks on the difference of consecutive primes. Sci. Sinica 14 (1965), 786–788.

    MATH  MathSciNet  Google Scholar 

  96. E. Westzynthius, Über die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind. Comm. Phys. Math. Helsingfors (5) 25 (1931), 1–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Pintz, J. (2013). Paul Erdős and the Difference of Primes. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_18

Download citation

Publish with us

Policies and ethics