Variability of Extreme Ultraviolet Fluxes at Various Timescales as Measured On board the CORONAS Space Mission (SUFR-SP-K and VUSS-L Experiments)

  • A. A. NusinovEmail author
  • T. V. Kazachevskaya
  • V. V. Katyushina
  • P. M. Svidsky
  • D. A. Gonyukh
Part of the Astrophysics and Space Science Library book series (ASSL, volume 400)


The launch of the CORONAS satellites was of fundamental importance to the development of the national space weather service. The flights of the CORONAS automatic solar observatory gave us a clear idea of the space division of the service and its particular elements, as well as of the possibility to realize it by the effort of the national research institutions.


Solar Flare Solar Radiation Flux Flare Maximum Flare Evolution Annular Solar Eclipse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anevsky, S.I., Vernyi, A.E., Gonyukh, D.A., et al.: Calibration of the absolute spectral sensitivity of a solar UV radiometer with the use of synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A308, 165–168 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Asai, A., Yokoyama, T., Shimojo, M., Masuda, S., Shibata, K.: Flare ribbon expansion and energy release rate. Astrophys. J. 611(1), 557–567 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Bruevich, E.A., Nusinov, A.A.: Short-wave radiation spectrum for aeronomic calculations at different levels of solar activity. Geomagn. Aeron. 24(4), 581–585 (1984) (in Russian)ADSGoogle Scholar
  4. 4.
    Den, O.G., Somov, B.V.: Dissipation of the magnetic field in a high-temperature plasma as a mechanism of energy release in solar flares. Astron. Zh. 66(2), 294–306 (1989) (in Russian)ADSGoogle Scholar
  5. 5.
    Espenak, F., Anderson, J.: Annular and total solar eclipsis of 2003. NASA 2003 Eclipse Bull. NASA/tp-2002-211618, 12 (2003). http// Scholar
  6. 6.
    Gibson, E.G.: The Quiet Sun, 356 pp. NASA Spec. Pull, NASA-SP-303, (1973)Google Scholar
  7. 7.
    Hinteregger, H.E.: The extreme ultraviolet solar spectrum and its variation during a solar cycle. Ann. Geophys. 26, 547 (1970)Google Scholar
  8. 8.
    Hinteregger, H.E., Fukui, K., Gilson, B.R.: Observational, reference and model data on solar EUV, from measurements on AE-E. Geophys. Res. Lett. 8(11), 1147–1150 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    Katyushina, V.V., Nusinov, A.A.: The use of data on the solar radiation flux in the Lα line for the control of FUV spectrum. Geomagn. Aeron. 33(5), 167–170 (1993) (in Russian)ADSGoogle Scholar
  10. 10.
    Katyushina, V.V., Kazachevskaya, T.V., Nusinov, A.A.: In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-wavelength Investigations of Solar Activity. Proceedings IAU Symposium No. 223. 2004 International Astronomical Union, St. Petersburg (2004). doi:10.1017/S1743921304006246Google Scholar
  11. 11.
    Kazachevskaya, T.V., Kvater, G.S., Mishchenko, E.D., Selantyev, V.V.: Registration of vacuum ultraviolet radiation with the thermoluminescent phosphorus. Opt. Spectrosc. 40, 410–411 (1976) (in Russian)Google Scholar
  12. 12.
    Kazachevskaya, T.V., Ivanov-Kholodny, G.S., Gonyukh, D.A.: Estimation of the magnitude of the solar short-wave radiation flux based on the AES measurements in 1978–1979. Geomagn. Aeron. 25, 995–997 (1985) (in Russian)ADSGoogle Scholar
  13. 13.
    Kazachevskaya, T.V., Bruevich, E.A., Ivanov-Kholodny, G.S.: Satellite observations of chromospheric solar flares in the EUV spectral range. Solnechnye Dannye (3), 68–72 (1986) (in Russian)ADSGoogle Scholar
  14. 14.
    Kazachevskaya, T.V., Avdyushin, S.I., Gonyukh, D.A., et al.: Solar flux and spectrum measurements in the EUV spectral region on board the KORONAS-I satellite. Radiophys. Quantum Electron. 39(11–12), 1011–1014 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Kazachevskaya, T.V., Nusinov, A.A., Gonyukh, D.A.: Measurements of the solar short-wave ultraviolet flux on board the ≪ Electro ≫ and  ≪ Interball ≫ satellites in 1995–1996. Izv. RAN, Ser. Fiz. 62(6), 237–239 (1998) (in Russian)Google Scholar
  16. 16.
    Kazachevskaya, T.V., Nusinov, A.A., Svidsky, P.M., et al.: Measurement of short-wave solar ionizing radiation flux on the satellite INTERBALL-1 (tail probe). Cosmic Res. 36(3), 284–286 (1998) (in Russian)ADSGoogle Scholar
  17. 17.
    Kazachevskaya, T.V., Nusinov, A.A., Katyushina, V.V., Gonyukh, D.A.: Variations in solar shortwave radiation in the solar activity cycle as measured by the CORONAS satellites. Sol. Syst. Res. 42(4), 359 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Kuznetsov, S.N., Kudela, K., Myagkova, I.N., Yushkov, B.Yu.: X-ray and gamma-, emission Solar flare catalogue obtained by SONG on board CORONAS-F satellite. In: ISCS Symposium, ≪ Solar Variability as an Input to the Earth’s Environment ≫ , Tatranská Lomnica, Slovakia, 8 June 2003. ESA SP-535, September 2003, pp. 683–685Google Scholar
  19. 19.
    Lebedev, N.I., Kuznetsov, V.D., Oraevsky, V.N., Staude, J., Kostyk, R.I.: DIFOS helioseismic experiment on board the CORONAS-F mission. Astron. Rep. 48(10), 871 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Lee, J., Gallagher, P., Gary, D., Nita, G., Choe, G., Bong, S.-C., Yun, H.S.: Hα, extreme-ultraviolet, and microwave observations of the March 22 solar flare and spontaneous magnetic reconnection. Astrophys. J. 585(1), 524–535 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Lemaire, P., Gouttebroze, P., Vial, J.-C., Curdt, W., Schuhle, U., Wilhelm, K.: Flare observation of the Sun as a star by SUMER/SOHO in the hydrogen Lyman continuum. Astron. Astrophys. 418, 737–742 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Makarova, E.A., Kharitonov, A.V., Kazachevskaya, T.V.: The Solar Radiation Flux, 176 p. Nauka, Moscow (1991) (in Russian)Google Scholar
  23. 23.
    Mishchenko, E.D., Abdullaev, A.M., Kazachevskaya, T.V., Kvater, G.S.: Vaccum ultraviolet solar spectrometer based on the priniciple collisional photoelectronic spectrometry. Opt. Spectrosc. 44(6), 1076–1080 (1978) (in Russian)Google Scholar
  24. 24.
    Nusinov, A.A.: The brightness variation of ultraviolet sources at different wavelengths as a function of their position on the Sun. Solnechnye Dannye (1), 94–97 (1993) (in Russian)Google Scholar
  25. 25.
    Nusinov, A.A: The ionosphere as a natural detector for studying long-term variations in the solar geoeffective fluxes. Geomagn. Aeron. 44(6), 718–725 (2004)Google Scholar
  26. 26.
    Nusinov, A.A., Katyushina, V.V.: Lyman alpha line intensity as a Solar activity index. Sol. Phys. 152(1), 201–206 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Nusinov, A.A., Chulankin, D.I.: Soft X-ray variations during solar flares. Geomagn. Aeron. 37(1), 9 (1997)ADSGoogle Scholar
  28. 28.
    Nusinov, A.A., Kazachevskaya, T.V.: The variations ultraviolet radiation during large solar flares as observed on board the CORONAS-F spacecraft. Geomagn. Aeron. 45(3), 375–379 (2005)Google Scholar
  29. 29.
    Nusinov, A.A., Kazachevskaya, T.V.: Extreme ultraviolet and X-ray emission of solar flares as observed from the CORONAS-F spacecraft in 2001–2003. Sol. Syst. Res. 40(2), 111–116 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Nusinov, A.A., Kazachevskaya, T.V., Katyushina, V.V., Svidsky, P.M., et al.: Measurement of extreme ultraviolet solar radiation in different wavelength intervals onboard the CORONAS satellites: instruments and main results. Sol. Syst. Res. 39(6), 470–478 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Nusinov, A.A., Katyushina, V.V., Kazachevskaya, T.V., Kuimov, K.V., Bugaenko, O.I., Slemzin, V.A., Lebedev, N.I.: An annular eclipse on May 31, 2003, observed in extreme ultraviolet. Sol. Syst. Res. 40(4), 348 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Nusinov, A.A., Kazachevskaya, T.V., Myagkova, I.N., Kuznetsov, S.N., Yushkov, B.Yu.: Ultraviolet, hard X-ray, and gamma-ray emission of solar flares recorded by VUSS-L and SONG instruments in 2001–2003. Sol. Syst. Res. 40(4), 282–285 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Nusinov, A.A., Kazachevskaya, T.V., Katyushina, V.V.: A flux of EUV emission measured onboard the ≪ CORONAS ≫ artificial satellites during minimum of 23-rd cycle of solar activity. Adv. Space Res. 37, 246–252 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Qiu, J., Lee, J., Gray, D.E.: Impulsive and gradual nonthermal emissions in an X-class flare. Astrophys. J. 603(1 Pt. 1), 335–347 (2004)Google Scholar
  35. 35.
    Rawer, K., Tai, H.S.: Correlated variations of solar EUV line emissions. Adv. Space Res. 37(2), 234–237 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Rottman, G.J.: Observations of solar UV and EUV variability. Adv. Space Res. 8(7), 53–66 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    Rottman, G.J., Thomas, N., Woods, T.N., Thomas, P.: Sparn, solar-stellar irradiance comparison experiment 1: 1. instrument; design and operation. J. Geophys. Res. 98, 10667–10677 (1993)Google Scholar
  38. 38.
    Rottman, G.J., Woods, T.N., White, O.R., London, J.: Irradiance observations from the UARS SOLSTICE experiment. In: Pap, J.M., Frohlich, C., Hudson, H.S., Solanki, S. (eds.) The Sun as a Variable Star, pp. 73–80. Cambridge University Press, Cambridge (1994)Google Scholar
  39. 39.
    Rottman, G.J., Woods, T.N., McClintock, W.: SORCE solar UV irradiance results. Adv. Space Res. 37(2), 201–208 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Sommer, A.H.: Photoemissive Materials: Preparation, Properties and Uses, 268 pp. Wiley, New York (1969)Google Scholar
  41. 41.
    Somov, V.V., Oreshina, I.V., Lyubimov, G.P.: Topological model of a major solar flare. Astron. Rep. 48(3), 246 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Thomas, R.J., Starr, R., Crannell, C.J.: Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Sol. Phys. 95, 323–329 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    Warren, H.P., Warshall, A.D.: Ultraviolet flare ribbon brightenings and the onset of hard X-ray emission. Astrophys. J. 560(1 Pt. 2), L87–L90 (2002)Google Scholar
  44. 44.
    Woods, T.N., Thomas, N., Rottman, G.J., Ucker, G.J.: Solar-stellar irradiance comparison experiment 1: 2. Instrument; calibrations. J. Geophys. Res. 98, 10679–10694 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    Woods, T.N., Tobiska, W.K., Rottman, G.J., Worden, J.R.: Improved solar Lyman alpha irradiance modeling from 1947 to 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27215 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Zhitnik, I.A., Kuzin, S.V., Sobelman, O.I., et al.: Main results of the SPIRIT experiment onboard the CORONAS-F satellite. Sol. Syst. Res. 39(6), 442–452 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. A. Nusinov
    • 1
    Email author
  • T. V. Kazachevskaya
    • 1
  • V. V. Katyushina
    • 1
  • P. M. Svidsky
    • 1
  • D. A. Gonyukh
    • 2
  1. 1.Fedorov Institute of Applied GeophysicsMoscowRussia
  2. 2.Central Design Bureau of Hydrometeorological EquipmentMoscowRussia

Personalised recommendations