The Coronas-F Space Mission pp 175-256

Part of the Astrophysics and Space Science Library book series (ASSL, volume 400) | Cite as

The Study of the Cosmic Gamma-Emission Nonstationary Fluxes Characteristics by the AVS-F Apparatus Data

  • Yu. D. Kotov
  • I. V. Arkhangelskaja
  • A. I. Arkhangelsky
  • S. N. Kuznetsov
  • A. S. Glyanenko
  • P. A. Kalmykov
  • D. B. Amandzholova
  • V. T. Samoylenko
  • V. N. Yurov
  • A. V. Pavlov
  • O. I. Chervyakova
  • I. V. Afonina
Chapter

Abstract

The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares’ hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25 up to +30. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares’ hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line, nuclear lines, and neutron capture line on1H (2.223 MeV). In the spectrum of the January 20, 2005 solar flare the feature in the range of 15-21 MeV was detected for the first time. It can be associated with lines of 15.11 MeV (12C +16O) or 20.58 MeV (from neutron radiative capture on3He), or with their combination. Also several e-dominant flares without any gamma-lines in energy spectra were identified. All detected faint solar flares were e-dominant according to the preliminary data analysis.Thin structure with characteristic timescale of 30-160 s was observed at 99 % significance level on some solar flares stronger than M1.0 temporal profiles in the low-energy gamma-band in the energy ranges corresponding to the identified spectral features or whole gamma-band energy boundaries. According to the results of the preliminary analysis during the flare of January 20, 2005, thin structure with timescale from 7 ms to 35 ms was detected at 99 % confidence level in the energy range of 0.1-20 MeV. Some thin structure with characteristic timescale 50-110 s was observed on temporal profiles of several faint events.About 3 % of the identified events were gamma-ray bursts. During some bursts high-energy gamma-emission was observed, for example Emax = 147 ± 3 MeV for GRB050525.

References

  1. 1.
    Alcaraz, J., Alpat, B., Ambrosi, G., Anderhub, H., et al.: Cosmic protons. Phys. Lett. B490, 27 (2000)ADSGoogle Scholar
  2. 2.
    Alcaraz, J., Alvisi, D., Alpat, B., Ambrosi, G., et al.: Protons in near earth orbit. Phys. Lett. B472, 215 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Arkhangelskaja, I.V.: Application of fractal analysis for the processing of temporal profiles of non-stationary event recorded by the AVS-F instrument during the experiment onboard the spacecraft CORONAS-F. Kosmicheskaya nauka i tekhnologiya 9(5–6), 81 (2003), Ukraine (in Russian)Google Scholar
  4. 4.
    Arkhangelskaja, I.V.: CORONAS-F/AVS-F observations of terrestrial gamma-ray flashes. In: AGU, 86(52), Fall Meet. Suppl., Abstract N AE14A-08.2005Google Scholar
  5. 5.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D.: Model of the background of the AVS-F instrument in the low-energy gamma-range. Proceedings “Scienific session of MEPhI-2005”, M.: MEPhI, vol. 7, p. 35 (2005) (in Russian)Google Scholar
  6. 6.
    Arkhangelskaya, I.V., Chervyakova, O.I., Arlhangelsky, A.I., Glyanenko, A.S., Kotov, Yu.D.: Analysis of the stable operation of sectrometry channel of the AVS-F instrument in the low-energy gamma-range. In: Proceedings of the “International Conference “CORONAS-F: Three Years of the Solar Activity Observations, 2001–2004” January 31–February 5, IZMIRAN, Troitks, p. 33. (in Russian) (2005)Google Scholar
  7. 7.
    Arkhangelsky, A.I., Glyanenko, A.S., Kotov, Yu.D., Pavlov, A.V., et al.: The AVS-F experiment of the CORONAS-F project on registration of fast-changing fluxes of cosmic and solar gamma-emission. Pribory i tekhnika eksperimenta (5), 16 (1999) (in Russian)Google Scholar
  8. 8.
    Arkhangelsky, A.I., Glyanenko, A.S., Kotov, Yu.D., Pavlov, A.V., et al.: Modernisation of the AVS-F experiment of the CORONAS-F project. In: Proceedings of the “Scientific Session MEPhI-1999”, vol. 4. M.: MEPhI, p. 30 (1999) (in Russian)Google Scholar
  9. 9.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Glyanenko, A.S., Kotov, Yu.D.: In-flight calibration and the resulst of the data processing for the AVS-F instrument obtained during the experiment onboard the CORONAS-F satellite. Kosmicheskaya nauka i tekhnologiya 9(2), 20 (2003), Ukraine. (in Russian)Google Scholar
  10. 10.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Glyanenko, A.S., Kotov, Yu.D., et al.: October 29, 2003 solar flare gamma-emission spectra investigation by SONG and AVS-F data onboard CORONAS-F satellite. In: Procedings of the “Scientific Session MEPhI-2004”, M.: MEPhI, vol. 7, p. 18 (in Russian) (2004)Google Scholar
  11. 11.
    Arkhangelsky, A.I., Arkhangelskaja, I.V., Kotov, Yu.D., Glyanenko, A.S., et al.: Solar flares observed by AVS-F instrument onboard CORONAS-F satellite during 2,5 year of it’s operation. In: Multi-Wavelength Investigations of Solar Activity, IAU Symposium, vol. 223, p. 441. Cambridge University Press, Cambridge (2004)Google Scholar
  12. 12.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Kuznetsov, S.N.: The investigation of the spectra of solar events observed in October–November 2003. Multi-Wavelength Investigations of Solar Activity, IAU Symposium, vol. 223, p. 439. Cambridge University Press, Cambridge (2004)Google Scholar
  13. 13.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Glyanenko, A.S., Samoilenko, V.T., et al.: The stability of the AVS-F apparatus spectrometric section in the gamma-band. In: Proceedings of the 28th Russian Cosmic Ray Conference, p. 153 (2004)Google Scholar
  14. 14.
    Arkhangelskaja, I.V., Arkhangelskii, A.I., Glyanenko, A.S., Kotov, Yu.D., et al.: The solar flares observed in low energy gamma-ray band by AVS-F apparatus data onboard CORONAS-F satellite in 2001–2005 years. In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.) Proceedings of the 11th European Solar Physics Meeting “The Dynamic Sun: Challenges for Theory and Observations” (ESA SP-600), p. 108.1. 11–16 September 2005, Leuven, Belgium (2005)Google Scholar
  15. 15.
    Arkhangelskaja, I.V., Arkhangelskii, A.I., Glyanenko, A.S., Kotov, Yu.D., et al.: The investigation of January 2005 solar flares gamma-emission by AVS-F apparatus data onboard CORONAS-F satellite in 0,1–20 MeV energy band. In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.) Proceedings of the 11th European Solar Physics Meeting “The Dynamic Sun: Challenges for Theory and Observations” (ESA SP-600), p. 107.1. 11–16 September 2005, Leuven, Belgium (2005)Google Scholar
  16. 16.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Kuznetsov, S.N., et al.: Gamma-ray radiation of solar flares in October-November 2003 according to the data obtained with the AVS-F instrument onboard the CORONAS-F satellite. Solar Syst. Res. 40(4), 302–313 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D.: The AVS-F apparatus background model in the low-energy γ-band. In: Proceedings of the “International Conference “CORONAS-F: Three Years of the Solar Activity Observations, 2001–2004” January 31–February 5, IZMIRAN, Troitks, p. 28 (in Russian) (2005)Google Scholar
  18. 18.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Kuznetsov, S.N., et al.: The solar flare catalog in the low-energy gamma-ray range based on the AVS-F instrument data onboard the CORONAS-F satellite in 2001–2005. Solar Syst. Res. 40(2), 133 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Arkhangelskaja, I.V., Amandzholova, D.B., Arkhangelsky, A.I., Kotov, Yu.D.: The properties of the quasistationary equatorial precipitations according to the data of the AVS-F instrument onboard the CORONAS-F satellite. In: Abstracts of the “International Conference “CORONAS-F: Three Years of the Solar Activity Observations, 2001–2004” January 31–February 5, IZMIRAN, Troitsk, p. 14 (in Russian) (2005)Google Scholar
  20. 20.
    Arkhangelskaja, I.V., Amandzholova, D.B., Arkhangelsky, A.I., Kotov, Yu.D.: The stydies of quasistationary equatorial precipitaions according to the data of the AVS-F instrument. In: Procedings of the “Scientific Session MEPhI-2005”, M.: MEPhI, vol. 7, p. 31 (in Russian) (2005)Google Scholar
  21. 21.
    Arkhangelskaja, I.V., Amandzholova, D.B., Arkhangelsky, A.I., Kotov, Yu.D.: The studies of dependece of quasistationary equatorial precipitations on geomagnetic activity according to the data of the AVS-F instrument. In: Procedings of the “Scientific Session MEPhI-2007”, M.: MEPhI, vol. 7, p. 27 (in Russian) (2007)Google Scholar
  22. 22.
    Arkhangelskaja, I.V., Amandzholova, D.B., Arkhangelsky, A.I., Kotov, Yu.D.: Studies of the dependence of quasistationary equatorial precipitations on Kp- and Dst-indices of geomagnetic activity according to the data of the AVS-F instrument. In: Procedings of the “Scientific Session MEPhI-2006”, M.: MEPhI, vol. 7, p. 17 (in Russian) (2006)Google Scholar
  23. 23.
    Arkhangelskaja, I.V., Amandzholova, D.B., Arkhangelsky, A.I., Kotov, Yu.D.: Features of quasi-stationary precipitations according to the data obtained with the AVS-F instrument onboard the CORONAS-F satellite. Solar Syst. Res. 42(6), 536–542 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Amandzolova, D.B., Arkhangelskaja, I.V., Arkhangelskiy, A.I., Kotov, Yu.D., et al.: The analysis of quasistationary equatorial precipitations observation frequency dependence from the geomagnetical activity level. In: Proceedings of The 20th European Cosmic Ray Symposium in Lisbon, Portugal (2007) http://www.lip.pt/events/2006/ecrs/proc/ecrs06-s0-189.pdf
  25. 25.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Kuznetsov, S.N., et al.: Gamma-ray bursts recorded in 2001–2005 by the AVS-F instrument onboard the CORONAS-F satellite in the low-energy gamma-ray range. Cosmic Res. 45(3), 261–264 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Kalmykov, P.A.: The studying of January 20, 2005 solar flare characteristics in the high energy gamma-band by AVS-F data. In: Procedings of the “Scientific Session MEPhI-2007”, M.: MEPhI, vol. 7, p. 19 (in Russian) (2007)Google Scholar
  27. 27.
    Arkhangelskaja, I.V., Afonina, I.V., Arkhangelskij, A.I., Borodina, E.A., et al.: Preliminary results of database treatment from AVS-F apparatus in energy range 0,1–11 MeV. In: Proceedings of the 18th European Cosmic Ray Symposium, Moscow, Russian (2002)Google Scholar
  28. 28.
    Arkhangelskaja, I.V., Chervyakova, O.I., Arkhangelsky, A.I., Kotov, Yu.D., et al.: The stability of the AVS-F apparatus spectrometric section in the gamma-band. In: Procedings of the “Scientific Session MEPhI-2005”, M.: MEPhI, vol. 7, p. 33 (in Russian) (2005)Google Scholar
  29. 29.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Glyanenko, A.S., et al.: Solar flares catalogue in the high-energy γ-band by the data of the AVS-F apparatus onboard CORONAS-F satellite for the period of 2001–2005. In: Obridko, V.N., Zaitsev, V.V. (eds.) Proceedings of the Russian Conference “Experimental and Theoretical Investigations of Geliophysics Activity Forecasting Fundamentals”, pp. 9–14, Troitsk (in Russian) (2006)Google Scholar
  30. 30.
    Arkhangelsky, A.I., Glyanenko, A.S.: The use of the MicroPC in the AVS-F apparatus onboard CORONAS-F satellite. Modern Tekhnol. Automatization (3), 58 (in Russian) (2004)Google Scholar
  31. 31.
    Arkhangelskaja, I.V.: Fractal analysis method applicability to Terrestrial Gamma-Ray Flashes separation in database of AVS-F apparatus onboard CORONAS-F satellite. In: Fullekrug, M., Mareev, E.A., Rycroft, M.J. (eds.) Proceedings of the NATO Advanced Study Institute on “Sprites, Elves and Intense Lightning Discharges”, Corte, Corsica, 24–31 July 2004, Nato Science Series II: (closed), vol. 225, XVI, 399 p. Springer, 2006. p. 386Google Scholar
  32. 32.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Glyanenko, A.S., et al.: January 2005 solar flares series gamma-emission temporal profiles investigation by the data of the AVS-F apparatus onboard CORONAS-F satellite. In: Obridko, V.N., Zaitsev, V.V. (eds.) Proceedings of the Russian Conference “Experimental and Theoretical Investigations of Geliophysics Activity Forecasting Fundamentals”, Troitsk, pp. 15–20 (in Russian) (2006)Google Scholar
  33. 33.
    Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., Kuznetsov, S.N., et al.: Gamma-ray emission from solar flares of January 2005 observed by the AVS-F apparatus onboard the CORONAS-F satellite. Solar Syst. Res. 42(4), 351–358 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Arkhangelskaja, I.V., Arkhangelskij, A.I., Glyanenko, A.S., Kotov, Yu.D.: Thin structure of temporal profiles of solar flares January 15, 17 and 20, 2005 by data of AVS-F apparatus onboard CORONAS-F satellite. Adv. Space Res. 43(4), 542–546 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Arkhangelskij, A.I., Arkhangelskaja, I.V., Glyanenko, A.S., Kotov, Yu.D.: AVS-F observations of gamma-ray emission during January 20, 2005 solar flare up to 140 MeV. Adv. Space Res. 43(4), 589–593 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Arkhangelskaya, I.V., Arkhangelskii, A.I., Glyanenko, A.S., Kotov, Yu.D., et al.: The GRB detected in low energy gamma-ray band by AVS-F apparatus onboard CORONAS-F satellite in 2001–2005 years. In: Kleinert, H., Jantzen, R.D., Ruffini, R. (eds.) Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, pp. 2015–2018. World Scientific, Singapore (2008)Google Scholar
  37. 37.
    Arkhangelskaya, I.V., Arkhangelskii, A.I., Kotov, Yu.D. Kuznetsov S.N., et al.: Gamma-ray bursts observed by AVS-F apparatus onboard CORONAS-F satellite in the low-energy gamma-band during the period 2001–2005. 29 Russian Cosmic Ray Conference, Proceedings, pp. 2015–2018, GA11 (2006)Google Scholar
  38. 38.
    Arkhangelskaja, I., Arkhangelskiy, A., Kotov, Y., et al.: The emission in the region E > 0:1 MeV during disk and limb faint solar flares. Adv. Space Res. 51, 1996 (2013)CrossRefGoogle Scholar
  39. 39.
    Arkhangelskaja, I.V., Kostina, M.S., Arkhangelsky, A.I., et al.: Faint solar flares with hard X-ray and gamma emission observed by AVS-F onboard CORONAS-F satellite. In: Proceedings of the 37th COSPAR Scientific Assembly, Canada, p. 121 (2008)Google Scholar
  40. 40.
    Avakyan, S.V., Vdovin, V.I., Pustornakov, V.F.: Ionizing and penetrating radiaiton in the near-Earth space. SPb, Gosgidromet. (in Russian) (1994)Google Scholar
  41. 41.
    Barashenkov, V.S., Toneev, V.D.: Interactions of high-energy particles and atomic nuclei with nuclei. M.: Atomizdat, 1972. (in Russian)Google Scholar
  42. 42.
    Belousova, I.V., Bogovalov, S.V., Glyanenko, A.S., Klepikov, V.Yu. et al.: Background conditions in the range from 30 keV to 5 MeV in the orbit of CORONAS satellites. J. Moscow Phys. Soc. (6), 415 (1996)Google Scholar
  43. 43.
    Bieber, J.W., Clem, J., Evenson, P., et al.: Largest GLE in half a century: neutron monitor observations of the January 20, 2005 event. In: Acharya, B.S., Gupta, S., Jagadeesan, P., et al. (eds.) Proceedings of the 29th International Cosmic Ray Conference. 3–10 August 2005, Pune, India, vol. 1, p. 237. Tata Institute of Fundamental research, Mumbai (2005)Google Scholar
  44. 44.
    Bogovalov, S.V., Glyanenko, A.S., Grigoriev, A.I., Zhuravlev, V.I., et al.: Persectives of the studies of fast-changing X-ray and gamma-emission of the Sun by the CORONAS-I experiment. In: Proceedings of the III International Meeting CORONAS-I, Kaluga-88, L.: LPhTI, p. 130 (1989) (in Russian)Google Scholar
  45. 45.
    Bogomolov, A.V., Bogomolov, V.V., Denisov, Yu.I., Kudryavtsev, M.I., et al.: Characteristics of the components of the background gamma-emission and neutrons on the “Mir” station orbits. Space Res. 38(4), 355 (2000)Google Scholar
  46. 46.
    Bogomolov, A.V., Britvich, G.I., Myagkova, I.N., Ryumin, S.P.: Identification of neutrons from the background of gamma-quanta during registration by CsI(Tl) detectors. PTE (1), 13 (in Russian) (1996)Google Scholar
  47. 47.
    Butler, N.R., Kocevski, D., Bloom, J.S., et al.: A complete catalog of swift GRB spectra and durations: demise of a physical origin for pre-swift high-energy correlations. Appl. J. 671(1), 656 (2007)Google Scholar
  48. 48.
    Cane, H.V., Erickson, W.C., Kaiser, M.L., Raymond, J.C., et al.: Why did the January 20 2005 GLE Have Such a Rapid Onset? Fall 2005 AGU Abstract N SH21A-05Google Scholar
  49. 49.
    Charalambous, P.M., Dean, A.J., Lewis, R.A., Dipper, N.A.: The background noise in space born low-energy gamma-ray telescopes. Nucl. Instr. Meth A283, 533 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    Cohen, M.B., Inan, U.S., Fishman, G.L.: Terrestrial gamma-ray flashes observed on BATSE/CGRO and ELF/VLF radio atmospherics. In: American Geophysical Union, Fall Meeting, abstract N AE33A-0944 (2005)Google Scholar
  51. 51.
    Crannell, C.J., Crannell, H., Ramaty, R.: Solar gamma Rays above 8 MeV. Astrophys. J. 229 762 (1979)ADSCrossRefGoogle Scholar
  52. 52.
    Crannell, C.J., Lang, F.L.: Nuclear gamma-ray ratios as spectral diagnostics for protons accelerated in solar flares. Proceedings of the Workshop on Nuclear Spectroscopy of Astrophysical Sourses, held in Washington, DC, December 14–16, p. 18 (1987)Google Scholar
  53. 53.
    Crownover, R.M.: Introduction to Fractals and Chaos. Jones and Bartlett Publ., London (1995)Google Scholar
  54. 54.
    Dean, A.J., Lei, F., Knight, P.J.: The space radiation environment and background noise in astronomical -ray telescopes. J. Br. Interplanetary Soc. 53(3–4), 91 (2000)ADSGoogle Scholar
  55. 55.
    Dean, A.J., Lei, F., Knight, P.J.: The space radiation environment and background noise in astronomical γ-ray telescopes. J. Br. Interplanetary Soc. 53(3–4), 91 (2000)ADSGoogle Scholar
  56. 56.
    Devicheva, E.A., Dobrovolsky, G.F., Kovalevskaya, M.A., et al.: Complex study of the Sun and solar-Earth physics. In: Proceedings of the III International Meeting CORONAS-I, Kaluga-88, L.: LPhTI, p. 99 (1989) (in Russian)Google Scholar
  57. 57.
    Dunphy, P.P., Chupp, E.L., Bertsch, D., Schneid, E., et al.: Neutrons and pion-decay gamma-rays from the solar flare of 1991 June 11. Bull. Am. Astron. Soc. 28, 857 (1996)ADSGoogle Scholar
  58. 58.
    Forrest, D.J., Chupp, E.L.: Simultaneous acceleration of electrons and ions in solar flares. Nature 305, 291 (1983)ADSCrossRefGoogle Scholar
  59. 59.
    Fractals in physics: In: Proceedings of the VI International Symposium on Fractals in Physics. M: Nauka (1988)Google Scholar
  60. 60.
    Gan, W.Q.: Spectral evolution of energetic protons in solar flares. Astrophys. J. 496, 992 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    Gan, W.Q.: Solar gamma-ray spectroscopy and abundance of elements. Chin. J. Astron. Astrophys. 26, 255 (2002)ADSGoogle Scholar
  62. 62.
    Gehrels, P.M.: Instrumental background in gamma-ray spectrometers flown in low Earth orbit. Nucl. Instr. Meth. A313, 513 (1992)ADSCrossRefGoogle Scholar
  63. 63.
    Glyanenko, A.S., Arkhangelsky, A.I.: Analysis of the operation of the controller based on octagon systems-4020 plate in the AVS-F experiment onboard the CORONAS-F satellite during 3.5 years of operation. In: Abstracts of the “International Conference “CORONAS-F: Three Years of the Solar Activity Observations, 2001–2004” January 31–February 5, IZMIRAN, Troitks, p. 32 (2005) (in Russian)Google Scholar
  64. 64.
    Hartman, R.C., Bertsch, D.L., Bloom, S.D., Chen, A.W., et al.: The third EGRET catalog of high-energy gamma-ray sources. Astrophys. J. Suppl. 123, 79 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    Horack, J.M., Fishman, G.J., Meegan, C.A., Wilson, R.B., et al.: BATSE observations of bremsstrahlung from electron precipitation events. In: Gamma-ray bursts, Proceedings of the Workshop, University of Alabama, Huntsville, 16–18 Oct 1991, p. 373 (1991)Google Scholar
  66. 66.
    Horack, J.M., Koshut, T.M., Mallozzi, R.S., Storey, S.D., et al.: Implications of the BATSE data for a helocentric origin of gamma-ray bursts. Astropys. J. 429, 319 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    Imhof, W.L., Smith, R.V.: Observation of nearly monoenergetic high-energy electrons in the inner radiation belt. Phys. Rev. Lett. 14(22), 886 (1965)ADSCrossRefGoogle Scholar
  68. 68.
    Inan, U.S., Reising, S.C., Fishman, G.J., Horack, J.M.: Geophys. Res. Lett. 23(9), 1017 (1996)ADSCrossRefGoogle Scholar
  69. 69.
    Kalmykov, P.A., Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., et al.: Modelling of the response of the detector of the AVS-F instrument of the CORONAS-F scientific equipment complex for the fluxes of space protons in the equatorial region of the Earth magnetosphere. Proceedings of the “Scientific Session of MEPhI-2007”, M.: MEPhI, vol. 7, p. 21 (in Russian) (2007)Google Scholar
  70. 70.
    Koshak, W.J., Krider, E.P.J.: Geophys. Res. 94, 1165 (1999)ADSCrossRefGoogle Scholar
  71. 71.
    Kotov, Yu.D., Belousova, I.V., Glyanenko, A.S., Bogovalov, S.V., et al.: Background Conditions aboard the KORONAS-I satellite as measured by the AVS instrument. Cosmic Res. 37(2), 42 (1999)Google Scholar
  72. 72.
    Kotov, Yu.D., Arkhangelskaja, I.V., Arkhangelsky, A.I., Glyanenko, A.S., et al.: Preliminary results of the processing of the data of the AVS-F instrument in the energy range of 0.1–11 MeV. Izvestiya RAN. Seriya phyzicheskaya, 66(11), 1666 (2002) (in Russian)Google Scholar
  73. 73.
    Kotov, Yu.D., Arkhangelskya, I.V., Arkhangelky, A.I., Glyanenko, A.S., et al.: Preliminary results of the processing of the AVS-F instrument data in the high-energy range. In: Proceedings “Scientific session MEPhI-2003”, M.: MEPhI, vol. 7, p. 20 (in Russian) (2003)Google Scholar
  74. 74.
    Kuznetsov, V.D.: The results of study of the sun and solar-terrestrial relations with the CORONAS-F satellite: a review. Solar Syst. Res. 39(6), 433–441 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    Kuznetsov, V.D., Charikov, Yu.E., Kotov, Yu.D., Kuznetsov, S.N., et al.: A review of the solar results from CORONAS-F satellite. In: Multi-Wavelength Investigations of Solar Activity, IAU Symposium, vol. 223, p. 357. Cambridge University Press, Cambridge (2004)Google Scholar
  76. 76.
    Kuznetsov, V.D., Sobelman, I.I., Zitnik, I.A., Kotov, Yu.D., et al.: Results of solar observations on-board the “CORONAS-F” satellite. In: Proceedings of the 35th COSPAR Scientific Assembly, Paris, France, p. 812, 18–25 July 2004Google Scholar
  77. 77.
    Kotov, Yu.D. The features of the high energy emission generation during solar flares and possibilities of CORONAS-PHOTON satellite project of its investigation. In: 28 Russian Cosmic Ray Conference, Electronic Proceedings, 7–11 June 2004, M.: MEPhI, p. 2112 (2004)Google Scholar
  78. 78.
    Kotov, Yu.D., Arkhangelskaya, I.V., Arkhangelsky, A.I., Glyanenko, A.S., et al.: Study of gamma rays of solar flare of October 29, 2003 according to data of AVS-F and SONG instruments onboard CORONAS-F satellite. Bull Russian Acad Sci. Phys. 69(6), 859 (2005)Google Scholar
  79. 79.
    Kotov, Yu.D. and COR-PHOT TEAM.: Satellite project “CORONAS-PHOTON” for study of solar hard radiation. In: Proceedings of the 35th COSPAR Scientific Assembly, p. 1283, 18–25 July 2004, Paris, FranceGoogle Scholar
  80. 80.
    Kuzhevskij, B.M. Nuclear processes in the solar athmosphere and solar cosmic emission M. Energoatomizdat (1985) (in Russian)Google Scholar
  81. 81.
    Kuzhevskij, B.M., Gan, W.Q., Miroshnichenko, L.I.: The role of nuclei-nuclei interactions in the production of gamma-ray lines in solar flares. Chin. J. Astron. Astrophys. 5(3), 295 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    Kuznetsov, S.N., Kudela, K., Myagkova, I.N., Yushkov, B.Yu.: X-ray and gamma-emission solar flare catalogue obtained by SONG onboard CORONAS-F satellite. In: Proceedings ISCS 2003 Symposium, “Solar Variability as an Input to the Earth’s Environment”, Tatranska Lomnica, Slovakia, 23–28 June 2003 (ESA SP-535, September 2003), p. 683Google Scholar
  83. 83.
    Kuznetsov, S.N., Bogomolov, A.V., Gordeev, Yu.P., Gotseluk, Yu.V., et al.: Preliminary results of SKL experiment onboard CORONAS-I satellite. Izvestiya RAS. Phys. 59(4), 2 (in Russian) (1995)Google Scholar
  84. 84.
    Kotov, Yu.D., Arkhangelskaja, I.V., Arkhangelsky, A.I., Glyanenko, A.S., et al.: Study of gamma rays of solar flare of October 29, 2003 according to data of AVS-F and SONG instruments onboard the CORONAS-F satellite. Bull. Ross. Akad. Nauk: Fiz. 69(6), 859–862 (2005)Google Scholar
  85. 85.
    Kostina, M.S., Arkhangelskaja, I.V., Arkhangelsky, A.I., Kotov, Yu.D., et al.: The investigation of the Neupert effect in faint solar flares on AVS-F data. In: Proceedings of the 31th International Cosmic Ray Conference. 7–15 July 2009, Lodz, Poland, pp.1551.1–1551.4. Published on CDROMGoogle Scholar
  86. 86.
    Lehtinen, N.G., Walt, M., Inan, U.S.: Geophys. Res. Lett. 23(19), 2645 (1996)ADSCrossRefGoogle Scholar
  87. 87.
    Mewaldt, R.A., Looper, M.D., Cohen, C.M., Mason, G.M., et al.: Space Weather Implications of the 20 January 2005 solar energetic particle event. American Geophysical Union, Spring Meeting 2005, N SH32A-05 (2005)Google Scholar
  88. 88.
    Murzin, V.S.: Introduction to the Cosmic Rays Physics. Atomizdat, Moscow (1979)Google Scholar
  89. 89.
    Nemets, O.F., Gofman, Yu.V.: Nuclear Physics Reference Book. “Naukova dumka”, Kiev (1975)Google Scholar
  90. 90.
    Pankov, V.M., Prokhin, V.L., Shkurkin, Yu.G., Glyanenko, A.S., et al.: X-ray semiconductor (CdTe) spectrometer for solar flare and preflare studies. Radiophys. Quant. Electron. 39(11–12), 1002–1005 (1996)ADSCrossRefGoogle Scholar
  91. 91.
    Pankov, V.M., Prokhin, V.L., Khavenson, N.G.: The XSS-1 X-ray CdTe spectrometer onboard the CORONAS-F satellite. Solar Syst. Res. 40(4), 314–318 (2006)ADSCrossRefGoogle Scholar
  92. 92.
    Porras, E., Sanchez, F., Reglero, V., Cordier, B., et al.: Production rate of proton-induced isotopes in different materials. Nucl. Instrum. Methods Phys. Res. B 160, 73 (2002)ADSCrossRefGoogle Scholar
  93. 93.
    Physics values reference book., // M.: Energoatomizdat (1991)Google Scholar
  94. 94.
    Ramaty, R., Murphy, R.J.: Nuclear processes and accelerated particles in solar flares. Space. Sci. Rev. 45, 213 (1987)ADSCrossRefGoogle Scholar
  95. 95.
    Ramaty, R., Mandzhavidze, N.: Gamma rays from solar flares. In: Proceedings of the IAU Symposium. Highly Energetics Physical Processes and Mechanisms for Emission from Astrophysical Plasmas, Montana State University, Bozeman, 6–10 July 1999, vol. 195, p. 12 (2000)Google Scholar
  96. 96.
    Ramaty, R., Mandzhavidze, N., Barat, C., Lockwood, J.A., et al.: The Giant 1991 June 1 flare: evidence for gamma-ray production in the corona and accelerated heavy ion abundance enhancements from gamma-ray spectroscopy. Astrophys. J. 479, 458 (1997)ADSCrossRefGoogle Scholar
  97. 97.
    Rubin, B.C., Lei, F., Fishman, G.J., Finger, M.H., et al.: A model of the gamma-ray background on the BATSE experiment. Astron. Astrophys. Suppl. 120, 687 (1996)ADSGoogle Scholar
  98. 98.
    Sanchez, F., Ballestros, F., Robert, A., Reglero, V., et al.: Background in low Earth orbits measured by LEGRI telescope—short and long term variability. Nucl. Instr. Meth. B155, 160 (1999)ADSCrossRefGoogle Scholar
  99. 99.
    Share, G.H., Murphy, R.J., Smith, D.M., Shih, A.Y., et al.: RHESSI Observations of the 2005 January 20 solar flare. In: Proceedings of the SHINE 2006 Workshop, p. 39. Zermatt Resort, Midway, Utah, DC. July 31–August 4 (2006)Google Scholar
  100. 100.
    Shih, A., Smith, D., Lin, R., Schwartz, R., et al.: Temporal variability of gamma-ray lines from the X-class solar flares of October–November 2003. 35th COSPAR Scientific Assembly, p. 3221. Held 18–25 July 2004, in Paris, France (2005)Google Scholar
  101. 101.
    Thompson, D.J., Bertch, D.L., Fichtel, C.E., Hartman, R.C., et al.: Calibration of the energetic gamma-ray experiment telescope (EGRET) for the Compton gamma-ray observatory. AJSS 86, 629 (1993)Google Scholar
  102. 102.
    Unan, U.S.: Lighting effects at high altitudes: sprites,elves, and terrestrial gamma ray flashes. C.R. Physique 2002 (3), 1411 (2002)Google Scholar
  103. 103.
    Vestrand, W.T., Forrest, D.J., Rieger, E., et al.: The solar maximum mission atlas of gamma-ray flares. Astrophys. J. Suppl. 120, 409 (1999)ADSCrossRefGoogle Scholar
  104. 104.
    Veselovsky, I.S., Panasyuk, M.I., Avdyushin, S.I., Bazilevskaya, G.A., et al.: Solar and heliospheric phenomena in October–November 2003: causes and effects. Cosmic Res. 42(5), 435–488 (2004)ADSCrossRefGoogle Scholar
  105. 105.
    Vishnevsky, O.V., Glyanenko, A.S., Pavlov, A.V., Pankov, V.M., et al.: Kalibration of the semiconductor detector XSS-1 of the CORONAS-F project. In: Proceedings of the “Sceintific session of MEPh-2001”, M.: MEPhI, vol. 7, p. 37 (2001) (in Russian)Google Scholar
  106. 106.
    Voronchev, V.T., Kukulin, V.I., Kuzhevskij, B.M.: Nucl. Instrum. Methods Phys. Res. A 525, 626 (2004)ADSCrossRefGoogle Scholar
  107. 107.
    Wescott, E.M., Sentman, D.D., Heavner, M.J., Hampton, D.L., et al.: Geophys. Res. Lett. 23(16), 2153 (1996)ADSCrossRefGoogle Scholar
  108. 108.
    Wigger, C., Hajdas, W., Zehnder, A., et al.: Proceedings of the Conference on Swift and GRBs: Unveiling the Relativistic Universe, San Servolo, Venice, 5–9 June 2006, Shpringer (2006)Google Scholar
  109. 109.
    Yermolaev, Yu.I., Zelenyi, L.M., Kuznetsov, V.D., Chertok, I.M., et al.: Magnetic storm of November, 2004: Solar, heliospheric, and magnetospheric disturbances. J. Atmos. Solar-Terrest. Phys. 70(2–4), 334–341 (2008)ADSCrossRefGoogle Scholar
  110. 110.
  111. 111.
    Arkhangelskaja, I.V., Amandzholova, D.B., Arkhangelsky, A.I., Kotov, Yu.D.: In: Procedings of the “Scientific session MEPhI-2005”, M.: MEPhI. vol. 7, p. 31 (2005) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yu. D. Kotov
    • 1
  • I. V. Arkhangelskaja
    • 1
  • A. I. Arkhangelsky
    • 1
  • S. N. Kuznetsov
    • 2
  • A. S. Glyanenko
    • 1
  • P. A. Kalmykov
    • 1
  • D. B. Amandzholova
    • 1
  • V. T. Samoylenko
    • 1
  • V. N. Yurov
    • 1
  • A. V. Pavlov
    • 1
  • O. I. Chervyakova
    • 1
  • I. V. Afonina
    • 1
  1. 1.National Research Nuclear University “MEPhI”MoscowRussia
  2. 2.D. V. Skobeltsyn Institute of Nuclear PhysicsM. V. Lomonosov Moscow State University (SINP MSU)MoscowRussia

Personalised recommendations