Brightness Fluctuations and Global Oscillations of the Sun (DIFOS Experiment)

  • Yu. D. ZhugzhdaEmail author
  • V. D. Kuznetsov
  • N. I. Lebedev
Part of the Astrophysics and Space Science Library book series (ASSL, volume 400)


The results of brightness observations of the Sun as a star by DIFOS experiment onboard CORONAS satellite are presented. The observations are performed in six spectral channels, namely 350, 500, 650, 850, 1,100, and 1,500 nm. The description of DIFOS multichannel photometer is provided. Data processing was done by analytic signal transformation. The theory of analytic signal transformation is presented.


Analytical Signal Continuous Spectrum Model Signal Discrete Spectrum Instantaneous Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boashash, B.: Time–Frequency Signals Analysis: Methods and Applications. Wiley, New York (1992)Google Scholar
  2. 2.
    Fink, L.M.: Probl. Inf. Transf. 2(4), 26 (1966) (in Russian)Google Scholar
  3. 3.
    Fink, L.M.: Signals, Noise, and Errors. Radio and Communications, Moscow (1984) (in Russian)Google Scholar
  4. 4.
    Gabor, D.J.: Inst. Electr. Eng. 46(26), 429 (1946)Google Scholar
  5. 5.
    Lebedev, N.I., Kuznetsov, V.D., et al.: The helioseismological CORONAS-F DIFOS experiment. Astron. Rep. 48(10), 871–875 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Rytov, S.M.: Trudy FIAN (Proc. Lebedev Phys. Inst.) 11(1), 43 (1940) (in Russian)Google Scholar
  7. 7.
    Stebbins, R., Goode, P.R.: Waves in solar photosphere. Sol. Phys. 110, 237 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Vainshtein, L.A., Vakman, D.E.: Frequency Separation in the Oscillation and Wave Theory. Nauka, Moscow (1983) (in Russian)Google Scholar
  9. 9.
    Vakman, D.E., Vainshtein, L.A.: Amplitude, phase, frequency-fundamental concepts of oscillation theory. Sov. Phys.—Usp. 20(12), 1002–1016 (1977)Google Scholar
  10. 10.
    White, O.R., Cha, M.Y.: Analysis of the 5 min oscillatory photospheric motions. Sol. Phys. 31, 23 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    Zhugzhda, Yu.D.: Nonadiabatic oscillations in an isothermal atmosphere. Pisma v AZh. 9, 631 (1983a) (in Russian)Google Scholar
  12. 12.
    Zhugzhda, Yu.D.: Non-adiabatic oscillations in an isothermal atmosphere. Astrophys. Space Sci. 95(2), L255 (1983b)ADSCrossRefGoogle Scholar
  13. 13.
    Zhugzhda, Y.D.: Temperature waves in the solar photosphere. Sol. Phys. 124, 205 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    Zhugzhda, Yu.D.: Analytical signal as a tool for studying the solar p-mode properties. Astron. Lett. 32(5), 329 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Zhugzhda, Y.D., Staude, J., Bartling, G.: Spectral darkening functions of solar p-modes—an effective tool for helioseismology. Astron. Astrophys. 305, L33–L36 (1996)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yu. D. Zhugzhda
    • 1
    Email author
  • V. D. Kuznetsov
    • 1
  • N. I. Lebedev
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation RAS (IZMIRAN)MoscowRussia

Personalised recommendations