The Coronas-F Space Mission pp 419-455

Part of the Astrophysics and Space Science Library book series (ASSL, volume 400)

The Impact of Solar Activity on the Earth Upper Atmosphere as Inferred from the CORONAS-F Scientific Experiments

  • S. I. Boldyrev
  • I. A. Egorov
  • I. A. Zhitnik
  • G. S. Ivanov–Kholodny
  • S. P. Ignat’yev
  • V. N. Ishkov
  • O. P. Kolomiitsev
  • S. V. Kuzin
  • V. D. Kuznetsov
  • A. I. Osin
Chapter

Abstract

The chapter is devoted to the first results of processing and analysis of data on the absorption of solar XUV radiation in the Earth upper atmosphere measured onboard the CORONAS-F space mission. The variability of the Earth’s upper atmosphere associated with solar activity has been studied by analyzing the orbital evolution of the CORONAS-F satellite. Experimental data have been compared with model calculations of the parameters of the upper atmosphere. The mathematical model of the Earth upper atmosphere (WMA01) developed at IZMIRAN is described in general terms. A list of active events on the Sun and associated processes in the Earth magnetosphere recorded during the CORONAS-F flight time (2001-2005) is presented. The comparison of model calculations with the experimental satellite data shows that the Earth atmosphere models available need updating. The possible ways to attack this problem are discussed.

References

  1. 1.
    Oraevsky, V.N., Sobelman, I.I.: Comprehensive studies of solar activity on the CORONAS-F satellite. Astron. Lett. 28(6), 401 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Kotov, Yu.D., Yurov, V.N., Boldyrev, S.I.: The scientific tasks and characteristics of the scientific equipment of the Russian CORONAS–FOTON space project. Kosmichna nauka i tekhnologiya (Space science and technology) 9(5/6), 53–59 (2003)Google Scholar
  3. 3.
    Zhitnik, I.A., Boyarchuk, K.A., Bugaenko, O.I., et al.: Effects of the absorption of solar XUV radiation by the Earth’s upper atmosphere at altitudes of 100–500 km in the X-ray solar images obtained on board the CORONAS-I (TEREK telescope) and CORONAS-F (SPIRIT X-ray complex) satellites. Solar Syst. Res. 37(4), 296–301 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Zhitnik, I.A., Bougaenko, O.I., Delaboudiniere, J.-P., et al.: Spirit X-Ray Telescope/Spectrohelio-meter Results. “Solar Variability: from Core to Outer Frontiers”. ESA SP-506. 2, 915–918 (2003)Google Scholar
  5. 5.
    Boldyrev, S.I., Ivanov-Kholodny, G.S., Kolomiitsev, O.P., et al.: Evolution of the Orbit of the CORONAS-F satellite and a prediction of its lifetime. Solar Syst. Res. 39(6), 501–507 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Boldyrev, S.I., Ivanov-Kholodny, G.S., Kolomiitsev, O.P., Osin, A.I.: Specifics of the orbital evolution of the CORONAS-F satellite at the final stage of its flight. Solar Syst. Res. 41(5), 420–424 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Boldyrev, S.I., Ivanov-Kholodny, G.S., Kolomiitsev, O.P., Osin, A.I.: Influence of solar activity on variations in the density of the Earth’s upper atmosphere. Geomagnetism Aeronomy 51(4), 546–549 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Zhitnik, I.A., Kuzin, S.V., Sobelman, I.I., et al.: Main results of the SPIRIT experiment on board the CORONAS-F satellite. Solar Syst. Res. 39(6), 442–452 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Oraevsky, V.N., Ivanov-Kholodny, G.S., Kanonidy, Kh.D., et al.: The upper atmosphere response to the solar geophysical variations on a final stage of flight MOF “Mir”. Acta Astronautica. 53(1), 75–84 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Kolomiitsev, O.P., Egorov, I.B., Surotkin, V.A.: Solar eclipse effects in the ionosphere F–region. Modelling research. Proc. Russian Acad. Sci. Phys. Ser. 64(9), 1886–1891 (2000)Google Scholar
  11. 11.
    Hedin, A.E.: MSIS–86 thermospheric model. J. Geophys. Res. 92, 4649–4662 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    Hedin, A.E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere (MSISE–90 atmospheric model). J. Geophys. Res. 96, 1159–1172 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Ivanov-Kholodny, G.S., Nikol’sky, G.M.: The Sun and the ionosphere. In: M.: Nauka. p. 455 (in Russian) (1969)Google Scholar
  14. 14.
    Kolomiitsev, O.P., Zhitnik, I.A., Ivanov-Kholodny, G., et al.: Preliminary results of comparison of satellite measurements to numerical simulations of some parameters of the Earth’s upper atmosphere. Solar Syst. Res. 40(4), 326–330 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Akasofu, S.-I., Chapman, S.: Solar-Terrestrial Physics, p. 901. Clarendon, Oxford (1972)Google Scholar
  16. 16.
  17. 17.
    Ratcliffe, J.A.: Physics of the Upper Atmosphere, p. 586. Academic, New York (1960)Google Scholar
  18. 18.
    King-Hele, K.: Theory of Satellite Orbits in an Atmosphere. Butterworths, London, p. 165 (1964)Google Scholar
  19. 19.
    Handbook of geophysics / Rev. Edition, p. 570. Macmillan, New York (1960)Google Scholar
  20. 20.
    Hargreaves, J.K.: The Upper Atmosphere and Solar–Terrestrial Relations: An Introduction to the Aerospace Environment, p. 298. Van Nostrand Reinhold Company, New York (1979)Google Scholar
  21. 21.
    Bruzek, A., Durrant, C.: Illustrated Glossary for Solar and Solar-Terrestrial Physics, p. 224. D. Reidel Publishing Co., Dordrecht (1977)Google Scholar
  22. 22.
    Boyarchuk, K.A., Ivanov-Kholodny, G.S., Kolomiitsev, O.P., et al.: Response of the midlatitude ionosphere to extreme solar events in October–November 2003. Geomagnetism Aeronomy 45(1), 80–86 (2005)Google Scholar
  23. 23.
    Boldyrev, S.I., Ivanov-Kholodny, G.S., Kolomiitsev, O.P.: The problem of predicting the lifetime of low–orbital satellites. In: Procedings of the “Scientific session MEPhI–2006”, M.: MEPhI, vol. 7. pp. 30–31 (in Russian) (2006)Google Scholar
  24. 24.
    Ishkov, V.N.: Properties of the current 23rd solar-activity cycle. Solar Syst. Res. 39(6), 453–461 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Ishkov, V.N.: Evolution and flare productivity of active regions in October–November 2003. Solar Syst. Res. 40(2), 117–124 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Afonin, V.V., Kolomiitsev, O.P., Mizun, Yu.G.: Satellite measurements of electron temperature and its behavioral characteristics in the region of the main ionospheric valley. Geomagnetism Aeronomy (in Russian) 18(3), 290–292 (1978)Google Scholar
  27. 27.
    Kuznetsov, V.D., Boldyrev, S.I., Zaitsev, A.V.: The forecast of space weather in near-Earth space. In: Procedings of the “Scientific Session MEPhI–2007”, M.: MEPhI, vol. 7, pp. 30–32 (in Russian) (2007)Google Scholar
  28. 28.
    Fatkullin, M.N., Zelenova, T.I., Kozlov, V.K., et al.: Empirical models of the midlatitude ionosphere. M.: Nauka, p. 256 (in Russian) (1981)Google Scholar
  29. 29.
    Kuznetsov, S.A., Kudela, K., Myagkova I.N., Yushkov B.Yu. X-ray and gamma-emission solar flare catalogue obtained by SONG on board CORONAS-F satellite. In: Proceedings of ISCS “Solar Variability as an input to the Earth’s Environment” ESA SP-535, pp. 683–686 (2003)Google Scholar
  30. 30.
    Veselovsky, I.S., Panasyuk, M.I., Avdyushin, S.I., et al.: Solar and heliospheric phenomena in October–November 2003: causes and effects. Cosmic Res. 42(5), 435–488 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. I. Boldyrev
    • 1
  • I. A. Egorov
    • 1
  • I. A. Zhitnik
    • 2
  • G. S. Ivanov–Kholodny
    • 1
  • S. P. Ignat’yev
    • 2
  • V. N. Ishkov
    • 1
  • O. P. Kolomiitsev
    • 1
  • S. V. Kuzin
    • 2
  • V. D. Kuznetsov
    • 1
  • A. I. Osin
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation RAS (IZMIRAN)MoscowRussia
  2. 2.Lebedev Physical Institute RAS (FIAN)MoskowRussia

Personalised recommendations