Advertisement

A Static and Dynamic Recommendations System for Best Practice Networks

  • Pierfrancesco Bellini
  • Ivan Bruno
  • Paolo Nesi
  • Michela Paolucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8006)

Abstract

Semantics computing technologies may be used to provide recommendations and stimulate user engagement in many kinds of services, such as social media, match making, best practice networks, technology transfer, etc. The recommendation metrics used take into account both static information and dynamical behaviors of users on a Social Network Platform. The recommendations provided include those realized taking into account also strategic and random users. The set of recommendations have been assessed with respect to the user’s acceptance, which allowed to validate the solution and to tune the parameters. The experience performed in creating and validating recommendation systems adopted for ECLAP and APREToscana best practice networks is described and results obtained are reported. The identified model has significantly increased the acceptance rate for the recommendation on ECLAP.

Keywords

best practice network semantic computing recommendations social media grid computing validation model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellini, P., Bruno, I., Cenni, D., Fuzier, A., Nesi, P., Paolucci, M.: Mobile Medicine: Semantic Computing Management for Health Care Applications on Desktop and Mobile Devices. International Journal Multimedia Tools and Applications 58(1), 41–79 (2012)CrossRefGoogle Scholar
  2. 2.
    Ciaramita, M., Murdock, V., Plachouras, V.: Semantic Associations for Contextual Advertising. Journal of Electronic Commerce Research 9(1) (2008)Google Scholar
  3. 3.
    Anagnostopoulos, A., Broder, A.Z., Gabrilovich, E., Josifovski, V., Riedel, L.: Just-in-Time Contextual Advertising. In: CIKM 2007, Lisboa, Portugal, November 6-8 (2007)Google Scholar
  4. 4.
    Zhang, Y., Surendran, A.C., Platt, J.C., Narasimhan, M.: Learning from Multitopic Web Documents for Contextual Advertisement. In: KDD 2008, Las Vegas, Nevada, USA, August 24-27 (2008)Google Scholar
  5. 5.
    Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A Semantic Approach to Contextual Advertising. In: Proc. of 30th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, SIGIR 2007 (2007)Google Scholar
  6. 6.
    Bartz, K., Murthi, V., Sebastian, S.: Logistic Regression and Collaborative Filtering for Sponsored Search Term Recommendation. In: EC 2006, Ann Arbor, Michigan, June 11-15 (2006)Google Scholar
  7. 7.
    Anderson, E.F., McLoughlin, L., Liarokapis, F., Peters, C., Petridis, P., de Freitas, S.: Developing Serious Games for Cultural Heritage: A State-of-the-Art Review. Virtual Reality 14(4) (2010)Google Scholar
  8. 8.
    Martín-Vicente, M.I., Gil-Solla, A., Ramos-Cabrer, M., Blanco-Fernández, Y., López-Nores, M.: Semantic inference of user’s reputation and expertise to improve collaborative recommendations. Journal of Expert Systems with Applications: An International Journal Archive 39(9), 8248–8258 (2012)CrossRefGoogle Scholar
  9. 9.
    Bellini, P., Bruno, I., Cenni, D., Nesi, P.: Micro grids for scalable media computing and intelligence on distributed scenarios. IEEE Multimedia 19(2), 69–79 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierfrancesco Bellini
    • 1
  • Ivan Bruno
    • 1
  • Paolo Nesi
    • 1
  • Michela Paolucci
    • 1
  1. 1.DISIT-DSI, Distributed Systems and Internet Technology Lab, Dipartimento di Ingegneria dell’Informazione, DINFOUniversità degli Studi di FirenzeFirenzeItaly

Personalised recommendations